Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century

<p>Identification of terrestrial carbon (C) sources and sinks is critical for understanding the Earth system as well as mitigating and adapting to climate change resulting from greenhouse gas emissions. Predicting whether a given location will act as a C source or sink using terrestrial ecosy...

Full description

Bibliographic Details
Main Authors: T. L. Smallman, D. T. Milodowski, E. S. Neto, G. Koren, J. Ometto, M. Williams
Format: Article
Language:English
Published: Copernicus Publications 2021-11-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/12/1191/2021/esd-12-1191-2021.pdf
_version_ 1818824007996145664
author T. L. Smallman
T. L. Smallman
D. T. Milodowski
D. T. Milodowski
E. S. Neto
G. Koren
G. Koren
J. Ometto
M. Williams
M. Williams
author_facet T. L. Smallman
T. L. Smallman
D. T. Milodowski
D. T. Milodowski
E. S. Neto
G. Koren
G. Koren
J. Ometto
M. Williams
M. Williams
author_sort T. L. Smallman
collection DOAJ
description <p>Identification of terrestrial carbon (C) sources and sinks is critical for understanding the Earth system as well as mitigating and adapting to climate change resulting from greenhouse gas emissions. Predicting whether a given location will act as a C source or sink using terrestrial ecosystem models (TEMs) is challenging due to net flux being the difference between far larger, spatially and temporally variable fluxes with large uncertainties. Uncertainty in projections of future dynamics, critical for policy evaluation, has been determined using multi-TEM intercomparisons, for various emissions scenarios. This approach quantifies structural and forcing errors. However, the role of parameter error within models has not been determined. TEMs typically have defined parameters for specific plant functional types generated from the literature. To ascertain the importance of parameter error in forecasts, we present a Bayesian analysis that uses data on historical and current C cycling for Brazil to parameterise five TEMs of varied complexity with a retrieval of model error covariance at 1<span class="inline-formula"><sup>∘</sup></span> spatial resolution. After evaluation against data from 2001–2017, the parameterised models are simulated to 2100 under four climate change scenarios spanning the likely range of climate projections. Using multiple models, each with per pixel parameter ensembles, we partition forecast uncertainties. Parameter uncertainty dominates across most of Brazil when simulating future stock changes in biomass C and dead organic matter (DOM). Uncertainty of simulated biomass change is most strongly correlated with net primary productivity allocation to wood (<span class="inline-formula">NPP<sub>wood</sub></span>) and mean residence time of wood (<span class="inline-formula">MRT<sub>wood</sub></span>). Uncertainty of simulated DOM change is most strongly correlated with <span class="inline-formula">MRT<sub>soil</sub></span> and <span class="inline-formula">NPP<sub>wood</sub></span>. Due to the coupling between these variables and C stock dynamics being bi-directional, we argue that using repeat estimates of woody biomass will provide a valuable constraint needed to refine predictions of the future carbon cycle. Finally, evaluation of our multi-model analysis shows that wood litter contributes substantially to fire emissions, necessitating a greater understanding of wood litter C cycling than is typically considered in large-scale TEMs.</p>
first_indexed 2024-12-18T23:49:02Z
format Article
id doaj.art-71a6cf9fc239449bbc1e7dcbdab79b3a
institution Directory Open Access Journal
issn 2190-4979
2190-4987
language English
last_indexed 2024-12-18T23:49:02Z
publishDate 2021-11-01
publisher Copernicus Publications
record_format Article
series Earth System Dynamics
spelling doaj.art-71a6cf9fc239449bbc1e7dcbdab79b3a2022-12-21T20:47:05ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872021-11-01121191123710.5194/esd-12-1191-2021Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st centuryT. L. Smallman0T. L. Smallman1D. T. Milodowski2D. T. Milodowski3E. S. Neto4G. Koren5G. Koren6J. Ometto7M. Williams8M. Williams9School of GeoSciences, University of Edinburgh, Edinburgh, UKNational Centre for Earth Observations, University of Edinburgh, Edinburgh, UKSchool of GeoSciences, University of Edinburgh, Edinburgh, UKNational Centre for Earth Observations, University of Edinburgh, Edinburgh, UKINPE, São José dos Campos, BrazilMeteorology and Air Quality, Wageningen University, Wageningen, the NetherlandsCopernicus Institute of Sustainable Development, Utrecht University, Utrecht, the NetherlandsINPE, São José dos Campos, BrazilSchool of GeoSciences, University of Edinburgh, Edinburgh, UKNational Centre for Earth Observations, University of Edinburgh, Edinburgh, UK<p>Identification of terrestrial carbon (C) sources and sinks is critical for understanding the Earth system as well as mitigating and adapting to climate change resulting from greenhouse gas emissions. Predicting whether a given location will act as a C source or sink using terrestrial ecosystem models (TEMs) is challenging due to net flux being the difference between far larger, spatially and temporally variable fluxes with large uncertainties. Uncertainty in projections of future dynamics, critical for policy evaluation, has been determined using multi-TEM intercomparisons, for various emissions scenarios. This approach quantifies structural and forcing errors. However, the role of parameter error within models has not been determined. TEMs typically have defined parameters for specific plant functional types generated from the literature. To ascertain the importance of parameter error in forecasts, we present a Bayesian analysis that uses data on historical and current C cycling for Brazil to parameterise five TEMs of varied complexity with a retrieval of model error covariance at 1<span class="inline-formula"><sup>∘</sup></span> spatial resolution. After evaluation against data from 2001–2017, the parameterised models are simulated to 2100 under four climate change scenarios spanning the likely range of climate projections. Using multiple models, each with per pixel parameter ensembles, we partition forecast uncertainties. Parameter uncertainty dominates across most of Brazil when simulating future stock changes in biomass C and dead organic matter (DOM). Uncertainty of simulated biomass change is most strongly correlated with net primary productivity allocation to wood (<span class="inline-formula">NPP<sub>wood</sub></span>) and mean residence time of wood (<span class="inline-formula">MRT<sub>wood</sub></span>). Uncertainty of simulated DOM change is most strongly correlated with <span class="inline-formula">MRT<sub>soil</sub></span> and <span class="inline-formula">NPP<sub>wood</sub></span>. Due to the coupling between these variables and C stock dynamics being bi-directional, we argue that using repeat estimates of woody biomass will provide a valuable constraint needed to refine predictions of the future carbon cycle. Finally, evaluation of our multi-model analysis shows that wood litter contributes substantially to fire emissions, necessitating a greater understanding of wood litter C cycling than is typically considered in large-scale TEMs.</p>https://esd.copernicus.org/articles/12/1191/2021/esd-12-1191-2021.pdf
spellingShingle T. L. Smallman
T. L. Smallman
D. T. Milodowski
D. T. Milodowski
E. S. Neto
G. Koren
G. Koren
J. Ometto
M. Williams
M. Williams
Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
Earth System Dynamics
title Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
title_full Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
title_fullStr Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
title_full_unstemmed Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
title_short Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century
title_sort parameter uncertainty dominates c cycle forecast errors over most of brazil for the 21st century
url https://esd.copernicus.org/articles/12/1191/2021/esd-12-1191-2021.pdf
work_keys_str_mv AT tlsmallman parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT tlsmallman parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT dtmilodowski parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT dtmilodowski parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT esneto parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT gkoren parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT gkoren parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT jometto parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT mwilliams parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury
AT mwilliams parameteruncertaintydominatesccycleforecasterrorsovermostofbrazilforthe21stcentury