ResViT-Rice: A Deep Learning Model Combining Residual Module and Transformer Encoder for Accurate Detection of Rice Diseases

Rice is a staple food for over half of the global population, but it faces significant yield losses: up to 52% due to leaf blast disease and brown spot diseases, respectively. This study aimed at proposing a hybrid architecture, namely ResViT-Rice, by taking advantage of both CNN and transformer for...

詳細記述

書誌詳細
主要な著者: Yujia Zhang, Luteng Zhong, Yu Ding, Hongfeng Yu, Zhaoyu Zhai
フォーマット: 論文
言語:English
出版事項: MDPI AG 2023-06-01
シリーズ:Agriculture
主題:
オンライン・アクセス:https://www.mdpi.com/2077-0472/13/6/1264