Machine learning for optimal electrode wettability in lithium ion batteries

Electrode wetting is a critical step in the Lithium-Ion Battery manufacturing process. The injection of electrolyte in the electrodes’ porosity requires the application of pressure-vacuum pumping strategies without warranty that the full porosity will be fully occupied with electrolyte at the end of...

Full description

Bibliographic Details
Main Authors: Amina El Malki, Mark Asch, Oier Arcelus, Abbos Shodiev, Jia Yu, Alejandro A. Franco
Format: Article
Language:English
Published: Elsevier 2023-03-01
Series:Journal of Power Sources Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666248523000069
_version_ 1797855266264317952
author Amina El Malki
Mark Asch
Oier Arcelus
Abbos Shodiev
Jia Yu
Alejandro A. Franco
author_facet Amina El Malki
Mark Asch
Oier Arcelus
Abbos Shodiev
Jia Yu
Alejandro A. Franco
author_sort Amina El Malki
collection DOAJ
description Electrode wetting is a critical step in the Lithium-Ion Battery manufacturing process. The injection of electrolyte in the electrodes’ porosity requires the application of pressure-vacuum pumping strategies without warranty that the full porosity will be fully occupied with electrolyte at the end of this process step. The electrode wettability strongly depends on the contact angle between the electrolyte and the electrode, the electrode microstructure characterized by its porosity, pore network and tortuosity factor, the electrolyte viscosity and density. Computational fluid dynamics approaches such as the Lattice Boltzmann Method can provide relevant information of the filling process, yet these approaches come with significant computational cost. The use of machine learning techniques can provide surrogate models for the optimization of this multi-parameter process that depends on both chemical and physical properties. Within this context, we propose a general workflow for realizing this objective and provide detailed simulation-based experiments. These physics-informed surrogate models open the path to tractable, rapid solutions of parameter identification and design optimization problems. They also provide a general workflow for applications on other optimal battery material design problems.
first_indexed 2024-04-09T20:19:49Z
format Article
id doaj.art-71ac927f50d74704b8de5fb8f8f4bba7
institution Directory Open Access Journal
issn 2666-2485
language English
last_indexed 2024-04-09T20:19:49Z
publishDate 2023-03-01
publisher Elsevier
record_format Article
series Journal of Power Sources Advances
spelling doaj.art-71ac927f50d74704b8de5fb8f8f4bba72023-03-31T05:55:30ZengElsevierJournal of Power Sources Advances2666-24852023-03-0120100114Machine learning for optimal electrode wettability in lithium ion batteriesAmina El Malki0Mark Asch1Oier Arcelus2Abbos Shodiev3Jia Yu4Alejandro A. Franco5Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, FranceLAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France; Corresponding author.Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, FranceLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, FranceLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, FranceLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; ALISTORE-European Research Institute, FR CNRS 3104, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France; Institut Universitaire de France, 103 Boulevard Saint Michel, Paris, 75005, France; Corresponding author. Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l’Energie, 15 rue Baudelocque, Amiens Cedex, 80039, France.Electrode wetting is a critical step in the Lithium-Ion Battery manufacturing process. The injection of electrolyte in the electrodes’ porosity requires the application of pressure-vacuum pumping strategies without warranty that the full porosity will be fully occupied with electrolyte at the end of this process step. The electrode wettability strongly depends on the contact angle between the electrolyte and the electrode, the electrode microstructure characterized by its porosity, pore network and tortuosity factor, the electrolyte viscosity and density. Computational fluid dynamics approaches such as the Lattice Boltzmann Method can provide relevant information of the filling process, yet these approaches come with significant computational cost. The use of machine learning techniques can provide surrogate models for the optimization of this multi-parameter process that depends on both chemical and physical properties. Within this context, we propose a general workflow for realizing this objective and provide detailed simulation-based experiments. These physics-informed surrogate models open the path to tractable, rapid solutions of parameter identification and design optimization problems. They also provide a general workflow for applications on other optimal battery material design problems.http://www.sciencedirect.com/science/article/pii/S2666248523000069Lithium ion batteryElectrolyte wettabilityMachine learningLattice Boltzmann method
spellingShingle Amina El Malki
Mark Asch
Oier Arcelus
Abbos Shodiev
Jia Yu
Alejandro A. Franco
Machine learning for optimal electrode wettability in lithium ion batteries
Journal of Power Sources Advances
Lithium ion battery
Electrolyte wettability
Machine learning
Lattice Boltzmann method
title Machine learning for optimal electrode wettability in lithium ion batteries
title_full Machine learning for optimal electrode wettability in lithium ion batteries
title_fullStr Machine learning for optimal electrode wettability in lithium ion batteries
title_full_unstemmed Machine learning for optimal electrode wettability in lithium ion batteries
title_short Machine learning for optimal electrode wettability in lithium ion batteries
title_sort machine learning for optimal electrode wettability in lithium ion batteries
topic Lithium ion battery
Electrolyte wettability
Machine learning
Lattice Boltzmann method
url http://www.sciencedirect.com/science/article/pii/S2666248523000069
work_keys_str_mv AT aminaelmalki machinelearningforoptimalelectrodewettabilityinlithiumionbatteries
AT markasch machinelearningforoptimalelectrodewettabilityinlithiumionbatteries
AT oierarcelus machinelearningforoptimalelectrodewettabilityinlithiumionbatteries
AT abbosshodiev machinelearningforoptimalelectrodewettabilityinlithiumionbatteries
AT jiayu machinelearningforoptimalelectrodewettabilityinlithiumionbatteries
AT alejandroafranco machinelearningforoptimalelectrodewettabilityinlithiumionbatteries