Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides)
Background and aims: Brown algae (Dictyopteris polypodioides) extract (DP) presented high inhibitory potential against α-amylase. The present study aims to isolate, purify and evaluate the antihyperglycemic and anti-type 2 diabetic activities of marine hydroquinone from DP. Methods: Marine hydroquin...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-07-01
|
Series: | Journal of Traditional and Complementary Medicine |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2225411023000421 |
_version_ | 1797802790330826752 |
---|---|
author | Thi Phuong Thao Truong Thanh Men Tran Thi Xuan Trang Dai Chi Linh Tran |
author_facet | Thi Phuong Thao Truong Thanh Men Tran Thi Xuan Trang Dai Chi Linh Tran |
author_sort | Thi Phuong Thao Truong |
collection | DOAJ |
description | Background and aims: Brown algae (Dictyopteris polypodioides) extract (DP) presented high inhibitory potential against α-amylase. The present study aims to isolate, purify and evaluate the antihyperglycemic and anti-type 2 diabetic activities of marine hydroquinone from DP. Methods: Marine hydroquinones were isolated using silica gel, HPLC, and NMR spectroscopy was used to identify compound 1 and compound 2 as zonarol and isozonarol, respectively. The anti-hyperglycemic and anti-type 2 diabetic activities of zonarol were investigated by in vitro assay (α-amylase, α-glucosidase), Lineweaver–Burk plot and Type 2 diabetes mellitus model (T2DM) mice induced by streptozotocin (STZ). Result: Zonarol had the highest content and the strongest inhibitory activity against α-glucosidase (IC50 value of 6.03 mg L−1) and α-amylase (IC50 value of 19.29 mg L−1) in a competitive inhibition and mix-type manner, respectively. The maltose and starch loading tests revealed that zonarol significantly reduced postprandial glycemia after 30 min loading (9.12 and 8.12 mg/dL, respectively), compared to normal (11.37 and 12.37 mg/dL, respectively). Zonarol exhibited pancreatic islet cell rejuvenation, as evidenced by increased pancreatic islet mass, and hence helps in the restoration of insulin levels and therefore improves the glucose metabolism in STZ-induced diabetic mice. Zonarol treatment in T2DM elevated abundant levels of main SCFAs (propionate, butyrate, and valeric acid), which are closely related to glucose metabolism homeostasis. Conclusion: Our finding indicates that zonarol could be used as a food supplement to treat hyperglycemia and diabetes. |
first_indexed | 2024-03-13T05:12:03Z |
format | Article |
id | doaj.art-71acc19533784a9d92a4f6b8c0b779ba |
institution | Directory Open Access Journal |
issn | 2225-4110 |
language | English |
last_indexed | 2024-03-13T05:12:03Z |
publishDate | 2023-07-01 |
publisher | Elsevier |
record_format | Article |
series | Journal of Traditional and Complementary Medicine |
spelling | doaj.art-71acc19533784a9d92a4f6b8c0b779ba2023-06-16T05:09:55ZengElsevierJournal of Traditional and Complementary Medicine2225-41102023-07-01134408416Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides)Thi Phuong Thao Truong0Thanh Men Tran1Thi Xuan Trang Dai2Chi Linh Tran3Corresponding author.; Department of Biology, College of Natural Sciences, Can Tho University, 94000, Viet NamDepartment of Biology, College of Natural Sciences, Can Tho University, 94000, Viet NamDepartment of Biology, College of Natural Sciences, Can Tho University, 94000, Viet NamDepartment of Biology, College of Natural Sciences, Can Tho University, 94000, Viet NamBackground and aims: Brown algae (Dictyopteris polypodioides) extract (DP) presented high inhibitory potential against α-amylase. The present study aims to isolate, purify and evaluate the antihyperglycemic and anti-type 2 diabetic activities of marine hydroquinone from DP. Methods: Marine hydroquinones were isolated using silica gel, HPLC, and NMR spectroscopy was used to identify compound 1 and compound 2 as zonarol and isozonarol, respectively. The anti-hyperglycemic and anti-type 2 diabetic activities of zonarol were investigated by in vitro assay (α-amylase, α-glucosidase), Lineweaver–Burk plot and Type 2 diabetes mellitus model (T2DM) mice induced by streptozotocin (STZ). Result: Zonarol had the highest content and the strongest inhibitory activity against α-glucosidase (IC50 value of 6.03 mg L−1) and α-amylase (IC50 value of 19.29 mg L−1) in a competitive inhibition and mix-type manner, respectively. The maltose and starch loading tests revealed that zonarol significantly reduced postprandial glycemia after 30 min loading (9.12 and 8.12 mg/dL, respectively), compared to normal (11.37 and 12.37 mg/dL, respectively). Zonarol exhibited pancreatic islet cell rejuvenation, as evidenced by increased pancreatic islet mass, and hence helps in the restoration of insulin levels and therefore improves the glucose metabolism in STZ-induced diabetic mice. Zonarol treatment in T2DM elevated abundant levels of main SCFAs (propionate, butyrate, and valeric acid), which are closely related to glucose metabolism homeostasis. Conclusion: Our finding indicates that zonarol could be used as a food supplement to treat hyperglycemia and diabetes.http://www.sciencedirect.com/science/article/pii/S2225411023000421Anti-hyperglycemiaAntidiabeticbrown algaeMarine hydroquinoneα-amylaseα-glucosidase |
spellingShingle | Thi Phuong Thao Truong Thanh Men Tran Thi Xuan Trang Dai Chi Linh Tran Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) Journal of Traditional and Complementary Medicine Anti-hyperglycemia Antidiabetic brown algae Marine hydroquinone α-amylase α-glucosidase |
title | Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) |
title_full | Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) |
title_fullStr | Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) |
title_full_unstemmed | Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) |
title_short | Antihyperglycemic and anti-type 2 diabetic activity of marine hydroquinone isolated from brown algae (Dictyopteris polypodioides) |
title_sort | antihyperglycemic and anti type 2 diabetic activity of marine hydroquinone isolated from brown algae dictyopteris polypodioides |
topic | Anti-hyperglycemia Antidiabetic brown algae Marine hydroquinone α-amylase α-glucosidase |
url | http://www.sciencedirect.com/science/article/pii/S2225411023000421 |
work_keys_str_mv | AT thiphuongthaotruong antihyperglycemicandantitype2diabeticactivityofmarinehydroquinoneisolatedfrombrownalgaedictyopterispolypodioides AT thanhmentran antihyperglycemicandantitype2diabeticactivityofmarinehydroquinoneisolatedfrombrownalgaedictyopterispolypodioides AT thixuantrangdai antihyperglycemicandantitype2diabeticactivityofmarinehydroquinoneisolatedfrombrownalgaedictyopterispolypodioides AT chilinhtran antihyperglycemicandantitype2diabeticactivityofmarinehydroquinoneisolatedfrombrownalgaedictyopterispolypodioides |