Effect of Binding and Dispersion Behavior of High-Entropy Alloy (HEA) Powders on the Microstructure and Mechanical Properties in a Novel HEA/Diamond Composite

This study reports the results of the addition of diamonds in the sintering process of a FCC-structured CoCrFeNiMo high-entropy alloy. The effect of raw powder states such as elemental mixed (EM) powder, gas atomization (GA) powder and mechanical alloying (MA) powder on the uniformity of constituent...

Full description

Bibliographic Details
Main Authors: Mingyang Zhang, Wei Zhang, Fangzhou Liu, Yingbo Peng, Songhao Hu, Yong Liu
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/20/12/924
Description
Summary:This study reports the results of the addition of diamonds in the sintering process of a FCC-structured CoCrFeNiMo high-entropy alloy. The effect of raw powder states such as elemental mixed (EM) powder, gas atomization (GA) powder and mechanical alloying (MA) powder on the uniformity of constituent phase was also investigated. Examination of microstructure and evaluation of mechanical properties of the composites depending on the mixing processes were performed. As a result, GA+MA powder composite showed the highest mechanical properties. The experimental results indicated that the powder manufacturing method was an essential parameter to determine the quality of HEA/diamond composites such as the uniformity of phase and binding behavior.
ISSN:1099-4300