Contraction limits of the proton-neutron symplectic model

The algebraic approach to nuclear structure physics allows a certain microscopic collective motion algebra to be also interpreted on macroscopic level which is achieved in the limit of large representation quantum numbers. Such limits are referred to as macroscopic or hydrodynamic limits and show ho...

Full description

Bibliographic Details
Main Author: Ganev H. G.
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201610703012
Description
Summary:The algebraic approach to nuclear structure physics allows a certain microscopic collective motion algebra to be also interpreted on macroscopic level which is achieved in the limit of large representation quantum numbers. Such limits are referred to as macroscopic or hydrodynamic limits and show how a given microscopic discrete system starts to behave like a continuous fluid. In the present paper, two contraction limits of the recently introduced fully microscopic proton-neutron symplectic model (PNSM) with the Sp(12; R) dynamical symmetry algebra are considered. As a result, two simplified macroscopic models of nuclear collective motion are obtained in simple geometrical terms. The first one is the U(6)-phonon model with the semi-direct product structure [HW(21)]U(6), which is shown to be actually an alternative formulation of the original proton-neutron symplectic model in the familiar IBM-terms. The second model which appears in double contraction limit is the two-rotor model with the ROTp(3) ⊗ ROTn(3) ⊃ ROT(3) algebraic structure. The latter, in contrast to the original two-rotor model, is not restricted to the case of two coupled axial rotors. In this way, the second contraction limit of the PNSM, provides the phenomenological two-rotor model with a simple microscopic foundation.
ISSN:2100-014X