Reliability and Validity of Single Axial Slice vs. Multiple Slice Quantitative Measurement of the Volume of Effusion-Synovitis on 3T Knee MRI in Knees with Osteoarthritis

Effusion-synovitis (ES) is recognized as a component of osteoarthritis, creating a need for rapid methods to assess ES on MRI. We describe the development and reliability of an efficient single-slice semi-automated quantitative approach to measure ES. We used two samples from the Osteoarthritis Init...

Full description

Bibliographic Details
Main Authors: Greg Gilles, Arjun Vohra, Dagoberto Robles, Mihra S. Taljanovic, Erin L. Ashbeck, Chelsea Caruso, Jeffrey Duryea, Edward J. Bedrick, Ali Guermazi, C. Kent Kwoh
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/12/7/2691
Description
Summary:Effusion-synovitis (ES) is recognized as a component of osteoarthritis, creating a need for rapid methods to assess ES on MRI. We describe the development and reliability of an efficient single-slice semi-automated quantitative approach to measure ES. We used two samples from the Osteoarthritis Initiative (OAI): 50 randomly selected OAI participants with radiographic osteoarthritis (i.e., Kellgren–Lawrence (KL) grade 2 or 3) and a subset from the Foundation for the National Institutes of Health Osteoarthritis Biomarker study. An experienced musculoskeletal radiologist trained four non-expert readers to use custom semi-automated software to measure ES on a single axial slice and then read scans blinded to prior assessments. The estimated intraclass correlation coefficient (ICC) for intra-reader reliability of the single-slice ES method in the KL 2–3 sample was 0.96 (95% CI: 0.93, 0.97), and for inter-reader reliability, the ICC was 0.90 (95% CI: 0.87, 0.95). The intra-reader mean absolute difference (MAD) was 35 mm<sup>3</sup> (95% CI: 28, 44), and the inter-reader MAD was 61 mm<sup>3</sup> (95% CI: 48, 76). Our single-slice quantitative knee ES measurement offers a reliable, valid, and efficient surrogate for multi-slice quantitative and semi-quantitative assessment.
ISSN:2077-0383