Modeling the Progression of Speech Deficits in Cerebellar Ataxia Using a Mixture Mixed-Effect Machine Learning Framework
Background: Accurate and reliable prediction of changes in the severity of cerebellar ataxia (CA) will be necessary for trials of disease-modifying therapies. Cerebellar dysarthria (CD) is a common feature of CA. This study demonstrated that objective acoustic measures were more sensitive than perce...
Hauptverfasser: | Bipasha Kashyap, Pubudu N. Pathirana, Malcolm Horne, Laura Power, David J. Szmulewicz |
---|---|
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
IEEE
2021-01-01
|
Schriftenreihe: | IEEE Access |
Schlagworte: | |
Online Zugang: | https://ieeexplore.ieee.org/document/9541400/ |
Ähnliche Einträge
Ähnliche Einträge
-
Machine Learning-Based Scoring System to Predict the Risk and Severity of Ataxic Speech Using Different Speech Tasks
von: Bipasha Kashyap, et al.
Veröffentlicht: (2023-01-01) -
Post-Surgical Cerebellar Mutism
von: J Gordon Millichap
Veröffentlicht: (1992-02-01) -
An update on Spino-cerebellar ataxias
von: Banashree Mondal, et al.
Veröffentlicht: (2013-01-01) -
Migraine and Cerebellar Ataxia
von: J Gordon Millichap
Veröffentlicht: (1990-09-01) -
A comprehensive scheme for the objective upper body assessments of subjects with cerebellar ataxia
von: Ha Tran, et al.
Veröffentlicht: (2020-12-01)