Motives and homotopy theory in logarithmic geometry

This document is a short user’s guide to the theory of motives and homotopy theory in the setting of logarithmic geometry. We review some of the basic ideas and results in relation to other works on motives with modulus, motivic homotopy theory, and reciprocity sheaves.

Bibliographic Details
Main Authors: Binda, Federico, Park, Doosung, Østvær, Paul Arne
Format: Article
Language:English
Published: Académie des sciences 2022-06-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.340/
_version_ 1827785237625569280
author Binda, Federico
Park, Doosung
Østvær, Paul Arne
author_facet Binda, Federico
Park, Doosung
Østvær, Paul Arne
author_sort Binda, Federico
collection DOAJ
description This document is a short user’s guide to the theory of motives and homotopy theory in the setting of logarithmic geometry. We review some of the basic ideas and results in relation to other works on motives with modulus, motivic homotopy theory, and reciprocity sheaves.
first_indexed 2024-03-11T16:16:19Z
format Article
id doaj.art-71ce68bca8f04558bcff24c9df702e61
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:19Z
publishDate 2022-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-71ce68bca8f04558bcff24c9df702e612023-10-24T14:19:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692022-06-01360G671772710.5802/crmath.34010.5802/crmath.340Motives and homotopy theory in logarithmic geometryBinda, Federico0https://orcid.org/0000-0002-3476-440XPark, Doosung1Østvær, Paul Arne2Department of Mathematics F. Enriques, University of Milan, Via Cesare Saldini 50, 20133 Milan, ItalyDepartment of Mathematics and informatics, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, GermanyDepartment of Mathematics F. Enriques, University of Milan, Via Cesare Saldini 50, 20133 Milan, Italy; Department of Mathematics, University of Oslo, Niels Henrik Abels hus, Moltke Moes vei 35, 0851 Oslo, NorwayThis document is a short user’s guide to the theory of motives and homotopy theory in the setting of logarithmic geometry. We review some of the basic ideas and results in relation to other works on motives with modulus, motivic homotopy theory, and reciprocity sheaves.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.340/Logarithmic geometrymotivesmotivic homotopy theory
spellingShingle Binda, Federico
Park, Doosung
Østvær, Paul Arne
Motives and homotopy theory in logarithmic geometry
Comptes Rendus. Mathématique
Logarithmic geometry
motives
motivic homotopy theory
title Motives and homotopy theory in logarithmic geometry
title_full Motives and homotopy theory in logarithmic geometry
title_fullStr Motives and homotopy theory in logarithmic geometry
title_full_unstemmed Motives and homotopy theory in logarithmic geometry
title_short Motives and homotopy theory in logarithmic geometry
title_sort motives and homotopy theory in logarithmic geometry
topic Logarithmic geometry
motives
motivic homotopy theory
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.340/
work_keys_str_mv AT bindafederico motivesandhomotopytheoryinlogarithmicgeometry
AT parkdoosung motivesandhomotopytheoryinlogarithmicgeometry
AT østværpaularne motivesandhomotopytheoryinlogarithmicgeometry