Apple Polyphenols Extract (APE) Alleviated Dextran Sulfate Sodium Induced Acute Ulcerative Colitis and Accompanying Neuroinflammation via Inhibition of Apoptosis and Pyroptosis

The main aim of this study was to investigate the potent anti-apoptosis and anti-pyroptosis effects of apple polyphenols extract (APE) on dextran sulfate sodium model group (DSS)-induced acute ulcerative colitis (UC) and the protective effect of APE against acute UC-related neuroinflammation and syn...

Full description

Bibliographic Details
Main Authors: Fang Liu, Xinjing Wang, Yuan Cui, Yan Yin, Dong Qiu, Shilan Li, Xinli Li
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/10/11/2711
Description
Summary:The main aim of this study was to investigate the potent anti-apoptosis and anti-pyroptosis effects of apple polyphenols extract (APE) on dextran sulfate sodium model group (DSS)-induced acute ulcerative colitis (UC) and the protective effect of APE against acute UC-related neuroinflammation and synapse damage. Forty-three C57BL/6 male mice were randomly divided into a control group (CON), a 3% DSS model group (DSS), a 500 mg/(kg·bw·d) APE group (HAP), and a 125 (LD) or 500 (HD) mg/(kg·bw·d) APE treatment concomitantly with DSS treatment group. The results showed that APE significantly ameliorated DSS-induced acute UC through inhibiting intestinal epithelial cell (IEC) apoptosis and the Caspase-1/Caspase-11-dependent pyroptosis pathway, with increased BCL-2 protein expression and decreased protein levels of NLRP3, ASC, Caspase-1/11, and GSDND. Furthermore, APE significantly reduced acute UC-related neuroinflammation and synapse damage, supported by decreased mRNA levels of hypothalamus <i>Cox-2</i> and hippocampus <i>Gfap</i> and also increased the mRNA levels of hypothalamus <i>Psd-95</i>. The increased protein expression of ZO-1 and Occludin improved the intestinal barrier integrity and improved the function of goblet cells by upregulating the protein level of MUC-2 and TTF3 accounted for the beneficial effects of APE on UC-associated neuroinflammation. Therefore, APE might be a safe and effective agent for the management of acute UC.
ISSN:2304-8158