Effects of Fluorine-Based Modification on Triboelectric Properties of Cellulose

The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was ass...

Full description

Bibliographic Details
Main Authors: Qiuxiao Zhu, Tingting Wang, Xiaoping Sun, Yuhe Wei, Sheng Zhang, Xuchong Wang, Lianxin Luo
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/17/3536
Description
Summary:The hydroxyl groups on the cellulose macromolecular chain cause the cellulose surface to have strong reactivity. In this study, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PDOTES) was used to modify cellulose to improve its triboelectric properties, and a triboelectric nanogenerator (TENG) was assembled. The introduction of fluorine groups reduced the surface potential of cellulose and turned it into a negative phase, which enhanced the ability to capture electrons. The electrical properties increased by 30% compared with unmodified cellulose. According to the principles of TENGs, a self-powered human-wearable device was designed using PDOTES-paper, which could detect movements of the human body, such as walking and running, and facilitated a practical method for the preparation of efficient wearable sensors.
ISSN:2073-4360