Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide
We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al) as a transparent conductive oxide (TCO) instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on hi...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2012-07-01
|
Series: | EPJ Photovoltaics |
Online Access: | http://dx.doi.org/10.1051/epjpv/2012004 |
_version_ | 1818556007426555904 |
---|---|
author | Roca i Cabarrocas P. Francke L. Prod’Homme P. Charpentier C. Labrune M. Salomon A. Courtois G. |
author_facet | Roca i Cabarrocas P. Francke L. Prod’Homme P. Charpentier C. Labrune M. Salomon A. Courtois G. |
author_sort | Roca i Cabarrocas P. |
collection | DOAJ |
description | We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al) as a transparent conductive oxide (TCO) instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc) while avoiding texturing the c-Si substrate. |
first_indexed | 2024-12-13T23:41:53Z |
format | Article |
id | doaj.art-71f4050d14a64aa48960a8882383747c |
institution | Directory Open Access Journal |
issn | 2105-0716 |
language | English |
last_indexed | 2024-12-13T23:41:53Z |
publishDate | 2012-07-01 |
publisher | EDP Sciences |
record_format | Article |
series | EPJ Photovoltaics |
spelling | doaj.art-71f4050d14a64aa48960a8882383747c2022-12-21T23:27:09ZengEDP SciencesEPJ Photovoltaics2105-07162012-07-0133500210.1051/epjpv/2012004Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxideRoca i Cabarrocas P.Francke L.Prod’Homme P.Charpentier C.Labrune M.Salomon A.Courtois G.We report on silicon heterojunction solar cells using textured aluminum doped zinc oxide (ZnO:Al) as a transparent conductive oxide (TCO) instead of flat indium tin oxide. Double side silicon heterojunction solar cell were fabricated by radio frequency plasma enhanced chemical vapor deposition on high life time N-type float zone crystalline silicon wafers. On both sides of these cells we have deposited by radio frequency magnetron sputtering ZnO:Al layers of thickness ranging from 800 nm to 1400 nm. These TCO layers were then textured by dipping the samples in a 0.5% hydrochloric acid. External quantum efficiency as well as I-V under 1 sun illumination measurements showed an increase of the current for the cells using textured ZnO:Al. The cells were then annealed at 150 °C, 175 °C and 200 °C during 30 min in ambient atmosphere and characterized at each annealing step. The results show that annealing has no impact on the open circuit voltage of the devices but that up to a 175 °C it enhances their short circuit current, consistent with an overall enhancement of their spectral response. Our results suggest that ZnO:Al is a promising material to increase the short circuit current (Jsc) while avoiding texturing the c-Si substrate.http://dx.doi.org/10.1051/epjpv/2012004 |
spellingShingle | Roca i Cabarrocas P. Francke L. Prod’Homme P. Charpentier C. Labrune M. Salomon A. Courtois G. Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide EPJ Photovoltaics |
title | Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide |
title_full | Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide |
title_fullStr | Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide |
title_full_unstemmed | Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide |
title_short | Effect of annealing on silicon heterojunction solar cells with textured ZnO:Al as transparent conductive oxide |
title_sort | effect of annealing on silicon heterojunction solar cells with textured zno al as transparent conductive oxide |
url | http://dx.doi.org/10.1051/epjpv/2012004 |
work_keys_str_mv | AT rocaicabarrocasp effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT franckel effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT prodhommep effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT charpentierc effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT labrunem effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT salomona effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide AT courtoisg effectofannealingonsiliconheterojunctionsolarcellswithtexturedznoalastransparentconductiveoxide |