Improved calculation of soil hydraulic conductivity with the simplified evaporation method

Abstract Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation expe...

Full description

Bibliographic Details
Main Authors: Leonardo Inforsato, Sascha Iden, Wolfgang Durner, Andre Peters, Quirijn De Jong van Lier
Format: Article
Language:English
Published: Wiley 2023-09-01
Series:Vadose Zone Journal
Online Access:https://doi.org/10.1002/vzj2.20267
Description
Summary:Abstract Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.
ISSN:1539-1663