Creating musical features using multi-faceted, multi-task encoders based on transformers
Abstract Computational machine intelligence approaches have enabled a variety of music-centric technologies in support of creating, sharing and interacting with music content. A strong performance on specific downstream application tasks, such as music genre detection and music emotion recognition,...
Автори: | Timothy Greer, Xuan Shi, Benjamin Ma, Shrikanth Narayanan |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Nature Portfolio
2023-07-01
|
Серія: | Scientific Reports |
Онлайн доступ: | https://doi.org/10.1038/s41598-023-36714-z |
Схожі ресурси
Схожі ресурси
-
A computational lens into how music characterizes genre in film.
за авторством: Benjamin Ma, та інші
Опубліковано: (2021-01-01) -
Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding
за авторством: Mari eTervaniemi, та інші
Опубліковано: (2014-07-01) -
Music recommendation algorithms based on knowledge graph and multi-task feature learning
за авторством: Xinqiao Liu, та інші
Опубліковано: (2024-01-01) -
Multi-faceted plasmonic nanocavities
за авторством: Bedingfield Kalun, та інші
Опубліковано: (2023-10-01) -
FACETS : multi-faceted functional decomposition of protein interaction networks
за авторством: Bhowmick, Sourav S., та інші
Опубліковано: (2013)