Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for <i>h</i>-Godunova–Levin and (<i>h</i><sub>1</sub>, <i>h</i><sub>2</sub>)-Convex Functions
This note generalizes several existing results related to Hermite–Hadamard inequality using <i>h</i>-Godunova–Levin and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><...
Main Authors: | Waqar Afzal, Mujahid Abbas, Waleed Hamali, Ali M. Mahnashi, M. De la Sen |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/7/9/687 |
Similar Items
-
Some New Generalizations of Integral Inequalities for Harmonical <i>cr</i>-(<i>h</i><sub>1</sub>,<i>h</i><sub>2</sub>)-Godunova–Levin Functions and Applications
by: Tareq Saeed, et al.
Published: (2022-12-01) -
Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $ (h_1, h_2) $-Godunova-Levin functions
by: Waqar Afzal, et al.
Published: (2022-09-01) -
Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (<i>h</i><sub>1</sub>, <i>h</i><sub>2</sub>)-Godunova–Levin Interval-Valued Functions
by: Waqar Afzal, et al.
Published: (2022-08-01) -
Hermite-Hadamard Type Inequalities for Interval (<i>h</i><sub>1</sub>, <i>h</i><sub>2</sub>)-Convex Functions
by: Yanrong An, et al.
Published: (2019-05-01) -
Properties of Coordinated <i>h</i><sub>1</sub>,<i>h</i><sub>2</sub>-Convex Functions of Two Variables Related to the Hermite–Hadamard–Fejér Type Inequalities
by: Muhammad Amer Latif
Published: (2023-02-01)