Complex Heat Exchange in Friction Steam of Brakes

In this article the structural features of friction pairs of brakes are analyzed. Heat transfer processes with new boundary conditions are described analytically with the addition of flow conditions and the appearance of a boundary thermal layer to convective heat transfer. The joint action of heat...

Full description

Bibliographic Details
Main Authors: Ivan Kernytskyy, Aleksandr Volchenko, Olga Szlachetka, Orest Horbay, Vasyl Skrypnyk, Dmytro Zhuravlev, Vasyl Bolonnyi, Volodymyr Yankiv, Ruslan Humenuyk, Pavlo Polyansky, Aleksandra Leśniewska, Dariusz Walasek, Eugeniusz Koda
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/19/7412
Description
Summary:In this article the structural features of friction pairs of brakes are analyzed. Heat transfer processes with new boundary conditions are described analytically with the addition of flow conditions and the appearance of a boundary thermal layer to convective heat transfer. The joint action of heat conduction and convection fields is presented. The release of heat during friction is due to the destruction of adhesive bonds in the actual contact zones, and the stress–strain state of micro-roughnesses. It should be said that due to the presence of accompanying transfer processes, complex heat transfer is much more complex compared to purely conductive, convective, and radiative heat transfer, which significantly complicates its analytical and experimental study. In this regard, the processes of complex heat transfer are currently studied little. From the point of view of non-equilibrium thermodynamics, the main task of describing the transfer process is to establish a relationship between the magnitude of the specific flux and the surface-volume temperatures that it causes in the metallic friction elements of the brakes. Additionally, as a result, an assessment of conductive and convective heat transfer in friction pairs of brake devices was made.
ISSN:1996-1073