β-Carotene from the Alga <i>Dunaliella bardawil</i> Decreases Gene Expression of Adipose Tissue Macrophage Recruitment Markers and Plasma Lipid Concentrations in Mice Fed a High-Fat Diet

Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis β-carotene-rich <i>Dunaliella bardawil</i> alga as the sole source of vitamin A on obesity-asso...

Full description

Bibliographic Details
Main Authors: Nir Melnikov, Yehuda Kamari, Michal Kandel-Kfir, Iris Barshack, Ami Ben-Amotz, Dror Harats, Aviv Shaish, Ayelet Harari
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Marine Drugs
Subjects:
Online Access:https://www.mdpi.com/1660-3397/20/7/433
Description
Summary:Vitamin A and provitamin A carotenoids are involved in the regulation of adipose tissue metabolism and inflammation. We examined the effect of dietary supplementation using all-trans and 9-cis β-carotene-rich <i>Dunaliella bardawil</i> alga as the sole source of vitamin A on obesity-associated comorbidities and adipose tissue dysfunction in a diet-induced obesity mouse model. Three-week-old male mice (C57BL/6) were randomly allocated into two groups and fed a high-fat, vitamin A-deficient diet supplemented with either vitamin A (HFD) or β-carotene (BC) (HFD-BC). Vitamin A levels in the liver, WATs, and BAT of the HFD-BC group were 1.5–2.4-fold higher than of the HFD group. BC concentrations were 5–6-fold greater in BAT compared to WAT in the HFD-BC group. The eWAT mRNA levels of the <i>Mcp-1</i> and <i>Cd68</i> were 1.6- and 2.1-fold lower, respectively, and the plasma cholesterol and triglyceride concentrations were 30% and 28% lower in the HFD-BC group compared with the HFD group. Dietary BC can be the exclusive vitamin A source in mice fed a high-fat diet, as shown by the vitamin A concentration in the plasma and tissues. Feeding BC rather than vitamin A reduces adipose tissue macrophage recruitment markers and plasma lipid concentrations.
ISSN:1660-3397