Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory

In this article, we provide sufficient conditions for the existence of periodic solutions for the polynomial differential system of the form x˙=−y+εP1(x,y,z,u,v)+h1(t),y˙=x+εP2(x,y,z,u,v)+h2(t),z˙=−u+εP3(x,y,z,u,v)+h3(t),u˙=z+εP4(x,y,z,u,v)+h4(t),v˙=λv+εP5(x,y,z,u,v)+h5(t),\begin{array}{r}\dot{x}=-y...

Full description

Bibliographic Details
Main Authors: Tabet Achref Eddine, Makhlouf Amar
Format: Article
Language:English
Published: De Gruyter 2023-12-01
Series:Nonautonomous Dynamical Systems
Subjects:
Online Access:https://doi.org/10.1515/msds-2023-0104
_version_ 1827398629224087552
author Tabet Achref Eddine
Makhlouf Amar
author_facet Tabet Achref Eddine
Makhlouf Amar
author_sort Tabet Achref Eddine
collection DOAJ
description In this article, we provide sufficient conditions for the existence of periodic solutions for the polynomial differential system of the form x˙=−y+εP1(x,y,z,u,v)+h1(t),y˙=x+εP2(x,y,z,u,v)+h2(t),z˙=−u+εP3(x,y,z,u,v)+h3(t),u˙=z+εP4(x,y,z,u,v)+h4(t),v˙=λv+εP5(x,y,z,u,v)+h5(t),\begin{array}{r}\dot{x}=-y+\varepsilon {P}_{1}\left(x,y,z,u,v)+{h}_{1}\left(t),\\ \dot{y}=x+\varepsilon {P}_{2}\left(x,y,z,u,v)+{h}_{2}\left(t),\\ \dot{z}=-u+\varepsilon {P}_{3}\left(x,y,z,u,v)+{h}_{3}\left(t),\\ \dot{u}=z+\varepsilon {P}_{4}\left(x,y,z,u,v)+{h}_{4}\left(t),\\ \dot{v}=\lambda v+\varepsilon {P}_{5}\left(x,y,z,u,v)+{h}_{5}\left(t),\end{array} where P1,P2,P3,P4{P}_{1},{P}_{2},{P}_{3},{P}_{4}, and P5{P}_{5} are polynomials in the variables x,y,z,u,vx,y,z,u,v of degree nn, hi(t){h}_{i}\left(t) are 2π2\pi -periodic functions with i=1,5¯i=\overline{1,5}, λ\lambda is a real number, and ε\varepsilon is a small parameter.
first_indexed 2024-03-08T19:32:30Z
format Article
id doaj.art-722bf236315d4e658856930612eca934
institution Directory Open Access Journal
issn 2353-0626
language English
last_indexed 2024-03-08T19:32:30Z
publishDate 2023-12-01
publisher De Gruyter
record_format Article
series Nonautonomous Dynamical Systems
spelling doaj.art-722bf236315d4e658856930612eca9342023-12-26T07:40:42ZengDe GruyterNonautonomous Dynamical Systems2353-06262023-12-0110110311110.1515/msds-2023-0104Periodic solutions of some polynomial differential systems in dimension 5 via averaging theoryTabet Achref Eddine0Makhlouf Amar1Department of Mathematics, Laboratory LMA, University of Annaba, El Hadjar, 23000 Annaba, AlgeriaDepartment of Mathematics, Laboratory LMA, University of Annaba, El Hadjar, 23000 Annaba, AlgeriaIn this article, we provide sufficient conditions for the existence of periodic solutions for the polynomial differential system of the form x˙=−y+εP1(x,y,z,u,v)+h1(t),y˙=x+εP2(x,y,z,u,v)+h2(t),z˙=−u+εP3(x,y,z,u,v)+h3(t),u˙=z+εP4(x,y,z,u,v)+h4(t),v˙=λv+εP5(x,y,z,u,v)+h5(t),\begin{array}{r}\dot{x}=-y+\varepsilon {P}_{1}\left(x,y,z,u,v)+{h}_{1}\left(t),\\ \dot{y}=x+\varepsilon {P}_{2}\left(x,y,z,u,v)+{h}_{2}\left(t),\\ \dot{z}=-u+\varepsilon {P}_{3}\left(x,y,z,u,v)+{h}_{3}\left(t),\\ \dot{u}=z+\varepsilon {P}_{4}\left(x,y,z,u,v)+{h}_{4}\left(t),\\ \dot{v}=\lambda v+\varepsilon {P}_{5}\left(x,y,z,u,v)+{h}_{5}\left(t),\end{array} where P1,P2,P3,P4{P}_{1},{P}_{2},{P}_{3},{P}_{4}, and P5{P}_{5} are polynomials in the variables x,y,z,u,vx,y,z,u,v of degree nn, hi(t){h}_{i}\left(t) are 2π2\pi -periodic functions with i=1,5¯i=\overline{1,5}, λ\lambda is a real number, and ε\varepsilon is a small parameter.https://doi.org/10.1515/msds-2023-0104periodic orbitdifferential systemaveraging theory34c2534c2937g15
spellingShingle Tabet Achref Eddine
Makhlouf Amar
Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
Nonautonomous Dynamical Systems
periodic orbit
differential system
averaging theory
34c25
34c29
37g15
title Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
title_full Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
title_fullStr Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
title_full_unstemmed Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
title_short Periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
title_sort periodic solutions of some polynomial differential systems in dimension 5 via averaging theory
topic periodic orbit
differential system
averaging theory
34c25
34c29
37g15
url https://doi.org/10.1515/msds-2023-0104
work_keys_str_mv AT tabetachrefeddine periodicsolutionsofsomepolynomialdifferentialsystemsindimension5viaaveragingtheory
AT makhloufamar periodicsolutionsofsomepolynomialdifferentialsystemsindimension5viaaveragingtheory