Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats
Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatumMethods:The present study examined the ef...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Iran University of Medical Sciences
2012-09-01
|
Series: | Basic and Clinical Neuroscience |
Subjects: | |
Online Access: | http://bcn.tums.ac.ir/browse.php?a_id=255&slc_lang=en&sid=1&ftxt=1 |
Summary: | Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatumMethods:The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze.Results:In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups.Discussion:Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control. |
---|---|
ISSN: | 2008-126X 2228-7442 |