Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems

Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As a...

Full description

Bibliographic Details
Main Authors: Qiang Li, Lili Ma
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/4/871
Description
Summary:Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems.
ISSN:2227-7390