Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems

Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As a...

Full description

Bibliographic Details
Main Authors: Qiang Li, Lili Ma
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/4/871
_version_ 1827756643442491392
author Qiang Li
Lili Ma
author_facet Qiang Li
Lili Ma
author_sort Qiang Li
collection DOAJ
description Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems.
first_indexed 2024-03-11T08:28:25Z
format Article
id doaj.art-7239a2eceb7e412baecf08b6f845218b
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T08:28:25Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-7239a2eceb7e412baecf08b6f845218b2023-11-16T21:55:11ZengMDPI AGMathematics2227-73902023-02-0111487110.3390/math11040871Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple SystemsQiang Li0Lili Ma1School of Science, Qiqihar University, Qiqihar 161006, ChinaSchool of Science, Qiqihar University, Qiqihar 161006, ChinaRepresentations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems.https://www.mdpi.com/2227-7390/11/4/871Hom-δ-Jordan Lie supertriple systemcohomologydeformationNijenhuis operatorabelian extension
spellingShingle Qiang Li
Lili Ma
Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
Mathematics
Hom-δ-Jordan Lie supertriple system
cohomology
deformation
Nijenhuis operator
abelian extension
title Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
title_full Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
title_fullStr Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
title_full_unstemmed Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
title_short Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
title_sort nijenhuis operators and abelian extensions of hom i δ i jordan lie supertriple systems
topic Hom-δ-Jordan Lie supertriple system
cohomology
deformation
Nijenhuis operator
abelian extension
url https://www.mdpi.com/2227-7390/11/4/871
work_keys_str_mv AT qiangli nijenhuisoperatorsandabelianextensionsofhomidijordanliesupertriplesystems
AT lilima nijenhuisoperatorsandabelianextensionsofhomidijordanliesupertriplesystems