Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems
Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/4/871 |
_version_ | 1827756643442491392 |
---|---|
author | Qiang Li Lili Ma |
author_facet | Qiang Li Lili Ma |
author_sort | Qiang Li |
collection | DOAJ |
description | Representations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems. |
first_indexed | 2024-03-11T08:28:25Z |
format | Article |
id | doaj.art-7239a2eceb7e412baecf08b6f845218b |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-11T08:28:25Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-7239a2eceb7e412baecf08b6f845218b2023-11-16T21:55:11ZengMDPI AGMathematics2227-73902023-02-0111487110.3390/math11040871Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple SystemsQiang Li0Lili Ma1School of Science, Qiqihar University, Qiqihar 161006, ChinaSchool of Science, Qiqihar University, Qiqihar 161006, ChinaRepresentations and cohomologies of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>-Jordan Lie supertriple systems.https://www.mdpi.com/2227-7390/11/4/871Hom-δ-Jordan Lie supertriple systemcohomologydeformationNijenhuis operatorabelian extension |
spellingShingle | Qiang Li Lili Ma Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems Mathematics Hom-δ-Jordan Lie supertriple system cohomology deformation Nijenhuis operator abelian extension |
title | Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems |
title_full | Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems |
title_fullStr | Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems |
title_full_unstemmed | Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems |
title_short | Nijenhuis Operators and Abelian Extensions of Hom-<i>δ</i>-Jordan Lie Supertriple Systems |
title_sort | nijenhuis operators and abelian extensions of hom i δ i jordan lie supertriple systems |
topic | Hom-δ-Jordan Lie supertriple system cohomology deformation Nijenhuis operator abelian extension |
url | https://www.mdpi.com/2227-7390/11/4/871 |
work_keys_str_mv | AT qiangli nijenhuisoperatorsandabelianextensionsofhomidijordanliesupertriplesystems AT lilima nijenhuisoperatorsandabelianextensionsofhomidijordanliesupertriplesystems |