Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria

Abstract Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency...

Full description

Bibliographic Details
Main Authors: Janne Purhonen, Rishi Banerjee, Vilma Wanne, Nina Sipari, Matthias Mörgelin, Vineta Fellman, Jukka Kallijärvi
Format: Article
Language:English
Published: Nature Portfolio 2023-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-38027-1
_version_ 1797836356032921600
author Janne Purhonen
Rishi Banerjee
Vilma Wanne
Nina Sipari
Matthias Mörgelin
Vineta Fellman
Jukka Kallijärvi
author_facet Janne Purhonen
Rishi Banerjee
Vilma Wanne
Nina Sipari
Matthias Mörgelin
Vineta Fellman
Jukka Kallijärvi
author_sort Janne Purhonen
collection DOAJ
description Abstract Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.
first_indexed 2024-04-09T15:08:35Z
format Article
id doaj.art-72543377fa1045cd9ce8e1279a29add7
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-09T15:08:35Z
publishDate 2023-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-72543377fa1045cd9ce8e1279a29add72023-04-30T11:21:53ZengNature PortfolioNature Communications2041-17232023-04-0114112310.1038/s41467-023-38027-1Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeriaJanne Purhonen0Rishi Banerjee1Vilma Wanne2Nina Sipari3Matthias Mörgelin4Vineta Fellman5Jukka Kallijärvi6Folkhälsan Research CenterFolkhälsan Research CenterFolkhälsan Research CenterViikki Metabolomics Unit, University of HelsinkiDivision of Infection Medicine, Department of Clinical Sciences, Lund UniversityFolkhälsan Research CenterFolkhälsan Research CenterAbstract Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.https://doi.org/10.1038/s41467-023-38027-1
spellingShingle Janne Purhonen
Rishi Banerjee
Vilma Wanne
Nina Sipari
Matthias Mörgelin
Vineta Fellman
Jukka Kallijärvi
Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
Nature Communications
title Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
title_full Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
title_fullStr Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
title_full_unstemmed Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
title_short Mitochondrial complex III deficiency drives c-MYC overexpression and illicit cell cycle entry leading to senescence and segmental progeria
title_sort mitochondrial complex iii deficiency drives c myc overexpression and illicit cell cycle entry leading to senescence and segmental progeria
url https://doi.org/10.1038/s41467-023-38027-1
work_keys_str_mv AT jannepurhonen mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT rishibanerjee mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT vilmawanne mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT ninasipari mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT matthiasmorgelin mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT vinetafellman mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria
AT jukkakallijarvi mitochondrialcomplexiiideficiencydrivescmycoverexpressionandillicitcellcycleentryleadingtosenescenceandsegmentalprogeria