Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法)
Schwarz Christoffel变换技术在处理某些工程问题时具有重要作用.从黎曼存在定理出发,建立了单位圆到任意多边形区域的映射函数Schwarz Christoffel变换模型,采用Levenberg-Marquardt算法求解含约束条件的非线性映射函数Schwarz Christoffel变换模型参数系统.针对映射函数中出现的奇异积分问题,对映射函数进行2次参数变换,将其化为高斯雅克比型积分,以积分路径中的奇异点为界,缩短积分路径,对子路径采用修正高斯积分方法进行计算.通过指数变换、连乘变换和累加变换,使任意初值问题均可进行迭代计算并满足初值的约束条件.提出以边长绝对误差和顶点绝对误...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2017-03-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2017.02.007 |
_version_ | 1797235810755411968 |
---|---|
author | CUIJianbin(崔建斌) JIAnzhao(姬安召) WANGYufeng(王玉风) YUJiangtao(于江涛) ZHOUHualong(周华龙) |
author_facet | CUIJianbin(崔建斌) JIAnzhao(姬安召) WANGYufeng(王玉风) YUJiangtao(于江涛) ZHOUHualong(周华龙) |
author_sort | CUIJianbin(崔建斌) |
collection | DOAJ |
description | Schwarz Christoffel变换技术在处理某些工程问题时具有重要作用.从黎曼存在定理出发,建立了单位圆到任意多边形区域的映射函数Schwarz Christoffel变换模型,采用Levenberg-Marquardt算法求解含约束条件的非线性映射函数Schwarz Christoffel变换模型参数系统.针对映射函数中出现的奇异积分问题,对映射函数进行2次参数变换,将其化为高斯雅克比型积分,以积分路径中的奇异点为界,缩短积分路径,对子路径采用修正高斯积分方法进行计算.通过指数变换、连乘变换和累加变换,使任意初值问题均可进行迭代计算并满足初值的约束条件.提出以边长绝对误差和顶点绝对误差为迭代计算的收敛条件,并保证了映射函数的精度.给出了11顶点多边形区域映射函数的求解算例,4种方案的计算结果表明,Schwarz Christoffel变换数值解法操作简单、精度高、收敛快. |
first_indexed | 2024-04-24T16:53:53Z |
format | Article |
id | doaj.art-7255d199efc541ecb3b58d638b42c973 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:53:53Z |
publishDate | 2017-03-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-7255d199efc541ecb3b58d638b42c9732024-03-29T01:58:36ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972017-03-0144216116710.3785/j.issn.1008-9497.2017.02.007Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法)CUIJianbin(崔建斌)0https://orcid.org/0000-0002-6693-3415JIAnzhao(姬安召)1WANGYufeng(王玉风)2YUJiangtao(于江涛)3ZHOUHualong(周华龙)4 1.Mathematics and Statistics Institute, Longdong University, Qingyang 745000, Gusu Province, China( 1.陇东学院数学与统计学院,甘肃 庆阳 745000) 2.Energy Engineering Institute, Longdong University, Qingyang 745000, Province, China( 2.陇东学院能源工程学院,甘肃 庆阳 745000) 2.Energy Engineering Institute, Longdong University, Qingyang 745000, Province, China( 2.陇东学院能源工程学院,甘肃 庆阳 745000) 2.Energy Engineering Institute, Longdong University, Qingyang 745000, Province, China( 2.陇东学院能源工程学院,甘肃 庆阳 745000) 2.Energy Engineering Institute, Longdong University, Qingyang 745000, Province, China( 2.陇东学院能源工程学院,甘肃 庆阳 745000)Schwarz Christoffel变换技术在处理某些工程问题时具有重要作用.从黎曼存在定理出发,建立了单位圆到任意多边形区域的映射函数Schwarz Christoffel变换模型,采用Levenberg-Marquardt算法求解含约束条件的非线性映射函数Schwarz Christoffel变换模型参数系统.针对映射函数中出现的奇异积分问题,对映射函数进行2次参数变换,将其化为高斯雅克比型积分,以积分路径中的奇异点为界,缩短积分路径,对子路径采用修正高斯积分方法进行计算.通过指数变换、连乘变换和累加变换,使任意初值问题均可进行迭代计算并满足初值的约束条件.提出以边长绝对误差和顶点绝对误差为迭代计算的收敛条件,并保证了映射函数的精度.给出了11顶点多边形区域映射函数的求解算例,4种方案的计算结果表明,Schwarz Christoffel变换数值解法操作简单、精度高、收敛快.https://doi.org/10.3785/j.issn.1008-9497.2017.02.007修正高斯雅克比型积分单位圆初值变换levenberg-marquardt算法schwarz christoffel变换 |
spellingShingle | CUIJianbin(崔建斌) JIAnzhao(姬安召) WANGYufeng(王玉风) YUJiangtao(于江涛) ZHOUHualong(周华龙) Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) Zhejiang Daxue xuebao. Lixue ban 修正高斯雅克比型积分 单位圆 初值变换 levenberg-marquardt算法 schwarz christoffel变换 |
title | Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) |
title_full | Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) |
title_fullStr | Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) |
title_full_unstemmed | Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) |
title_short | Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area(单位圆到任意多边形区域的Schwarz Christoffel变换数值解法) |
title_sort | numerical solution method for schwarz christoffel transformation from unit circle to arbitrary polygon area 单位圆到任意多边形区域的schwarz christoffel变换数值解法 |
topic | 修正高斯雅克比型积分 单位圆 初值变换 levenberg-marquardt算法 schwarz christoffel变换 |
url | https://doi.org/10.3785/j.issn.1008-9497.2017.02.007 |
work_keys_str_mv | AT cuijianbincuījiànbīn numericalsolutionmethodforschwarzchristoffeltransformationfromunitcircletoarbitrarypolygonareadānwèiyuándàorènyìduōbiānxíngqūyùdeschwarzchristoffelbiànhuànshùzhíjiěfǎ AT jianzhaojīānzhào numericalsolutionmethodforschwarzchristoffeltransformationfromunitcircletoarbitrarypolygonareadānwèiyuándàorènyìduōbiānxíngqūyùdeschwarzchristoffelbiànhuànshùzhíjiěfǎ AT wangyufengwángyùfēng numericalsolutionmethodforschwarzchristoffeltransformationfromunitcircletoarbitrarypolygonareadānwèiyuándàorènyìduōbiānxíngqūyùdeschwarzchristoffelbiànhuànshùzhíjiěfǎ AT yujiangtaoyújiāngtāo numericalsolutionmethodforschwarzchristoffeltransformationfromunitcircletoarbitrarypolygonareadānwèiyuándàorènyìduōbiānxíngqūyùdeschwarzchristoffelbiànhuànshùzhíjiěfǎ AT zhouhualongzhōuhuálóng numericalsolutionmethodforschwarzchristoffeltransformationfromunitcircletoarbitrarypolygonareadānwèiyuándàorènyìduōbiānxíngqūyùdeschwarzchristoffelbiànhuànshùzhíjiěfǎ |