Research on a Rice Counting Algorithm Based on an Improved MCNN and a Density Map

The thousand grain weight is an index of size, fullness and quality in crop seed detection and is an important basis for field yield prediction. To detect the thousand grain weight of rice requires the accurate counting of rice. We collected a total of 5670 images of three different types of rice se...

Full description

Bibliographic Details
Main Authors: Ao Feng, Hongxiang Li, Zixi Liu, Yuanjiang Luo, Haibo Pu, Bin Lin, Tao Liu
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/721
Description
Summary:The thousand grain weight is an index of size, fullness and quality in crop seed detection and is an important basis for field yield prediction. To detect the thousand grain weight of rice requires the accurate counting of rice. We collected a total of 5670 images of three different types of rice seeds with different qualities to construct a model. Considering the different shapes of different types of rice, this study used an adaptive Gaussian kernel to convolve with the rice coordinate function to obtain a more accurate density map, which was used as an important basis for determining the results of subsequent experiments. A Multi-Column Convolutional Neural Network was used to extract the features of different sizes of rice, and the features were fused by the fusion network to learn the mapping relationship from the original map features to the density map features. An advanced prior step was added to the original algorithm to estimate the density level of the image, which weakened the effect of the rice adhesion condition on the counting results. Extensive comparison experiments show that the proposed method is more accurate than the original MCNN algorithm.
ISSN:1099-4300