From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra

We show that an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra can be extended to a...

Full description

Bibliographic Details
Main Authors: Clay James Grewcoe, Larisa Jonke, Toni Kodžoman, George Manolakos
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/8/4/222
_version_ 1797409117500866560
author Clay James Grewcoe
Larisa Jonke
Toni Kodžoman
George Manolakos
author_facet Clay James Grewcoe
Larisa Jonke
Toni Kodžoman
George Manolakos
author_sort Clay James Grewcoe
collection DOAJ
description We show that an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra can be extended to a graded Hopf algebra with a codifferential. Then, we twist this extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra with a Drinfel’d twist, simultaneously twisting its modules. Taking the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra as its own (Hopf) module, we obtain the recently proposed braided <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra. The Hopf algebra morphisms are identified with the strict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-morphisms, whereas the braided <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-morphisms define a more general <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-action of twisted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebras.
first_indexed 2024-03-09T04:09:41Z
format Article
id doaj.art-726a097037c443d999587445424e2b93
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-09T04:09:41Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-726a097037c443d999587445424e2b932023-12-03T14:02:22ZengMDPI AGUniverse2218-19972022-04-018422210.3390/universe8040222From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-AlgebraClay James Grewcoe0Larisa Jonke1Toni Kodžoman2George Manolakos3Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, CroatiaDivision of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, CroatiaDivision of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, CroatiaDivision of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, CroatiaWe show that an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra can be extended to a graded Hopf algebra with a codifferential. Then, we twist this extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra with a Drinfel’d twist, simultaneously twisting its modules. Taking the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra as its own (Hopf) module, we obtain the recently proposed braided <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebra. The Hopf algebra morphisms are identified with the strict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-morphisms, whereas the braided <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-morphisms define a more general <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-action of twisted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mo>∞</mo></msub></semantics></math></inline-formula>-algebras.https://www.mdpi.com/2218-1997/8/4/222L∞-algebraHopf algebraDrinfel’d twist
spellingShingle Clay James Grewcoe
Larisa Jonke
Toni Kodžoman
George Manolakos
From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
Universe
L∞-algebra
Hopf algebra
Drinfel’d twist
title From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
title_full From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
title_fullStr From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
title_full_unstemmed From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
title_short From Hopf Algebra to Braided <i>L</i><sub>∞</sub>-Algebra
title_sort from hopf algebra to braided i l i sub ∞ sub algebra
topic L∞-algebra
Hopf algebra
Drinfel’d twist
url https://www.mdpi.com/2218-1997/8/4/222
work_keys_str_mv AT clayjamesgrewcoe fromhopfalgebratobraidedilisubsubalgebra
AT larisajonke fromhopfalgebratobraidedilisubsubalgebra
AT tonikodzoman fromhopfalgebratobraidedilisubsubalgebra
AT georgemanolakos fromhopfalgebratobraidedilisubsubalgebra