Summary: | The rise in big data applications in urban planning and transport management is now widening and becoming a part of local government decision-making processes. Understanding people flow inside the city helps urban and transport planners build a healthy and lively city. Many flow maps are based on origin-and-destination points with crossing lines, which reduce the map’s readability and overall appearance. Today, with the emergence of geolocation-enabled handheld devices with wireless communication and networking capabilities, human mobility and the resulting events can be captured and stored as text-based geospatial big data. In this paper, we used one-week mobile-call-detail records (CDR) and a GIS road network model to estimate hourly link population and flow directions, based on mobile-call activities of origin⁻destination pairs with a shortest-path analysis for the whole city. Moreover, to gain the actual population size from the number of mobile-call users, we introduced a home-based magnification factor (h-MF) by integrating with the national census. Therefore, the final output link data have both magnitude (actual population) and flow direction at one-hour intervals between 06:00 and 21:00. The hourly link population and flow direction dataset are intended to optimize bus routes, solve traffic congestion problems, and enhance disaster and emergency preparedness.
|