Linking cortical and behavioural inhibition: Testing the parameter specificity of a transcranial magnetic stimulation protocol

Across a series of studies, our laboratory has shown that the efficiency of action stopping is associated with the strength of GABAA-mediated short-intracortical inhibition (SICI) as measured using transcranial magnetic stimulation (TMS). However, these studies used fixed TMS parameters, which may n...

Full description

Bibliographic Details
Main Authors: Dominic M.D. Tran, Nahian S. Chowdhury, Nicolas A. McNair, Justin A. Harris, Evan J. Livesey
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Brain Stimulation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1935861X20302084
Description
Summary:Across a series of studies, our laboratory has shown that the efficiency of action stopping is associated with the strength of GABAA-mediated short-intracortical inhibition (SICI) as measured using transcranial magnetic stimulation (TMS). However, these studies used fixed TMS parameters, which may not optimally probe GABAA receptor activity for each individual. In the present study, we measured the relationship between stopping efficiency and SICI using a range of TMS parameters. Participants completed a right-hand unimanual stop signal task to obtain a measure of stopping efficiency. Resting-state SICI was measured from the left primary motor cortex using six combinations of interstimulus intervals and conditioning pulse intensities. We also established the parameters which generated the strongest SICI (SICImax) and weakest SICI (SICImin) for each individual. We found that stopping efficiency was significantly predicted by SICI using various TMS parameters, including SICImax. Interestingly, SICImin accounted for a similar proportion of variance in stopping efficiency as SICI measured using other TMS parameters. The findings suggest that the relationship between stopping efficiency and SICI is robust, reliable, and not influenced by the extent to which SICI is optimally probed.
ISSN:1935-861X