Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera
The measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement u...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/18/6151 |
_version_ | 1797517207683465216 |
---|---|
author | Thomas B. O. Rockett Nicholas A. Boone Robert D. Richards Jon R. Willmott |
author_facet | Thomas B. O. Rockett Nicholas A. Boone Robert D. Richards Jon R. Willmott |
author_sort | Thomas B. O. Rockett |
collection | DOAJ |
description | The measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement uncertainty. The system is capable of measuring over an unprecedently wide temperature range; however, this comes at the cost of a reduced temperature resolution and increased uncertainty compared to a conventional CMOS camera operating in photodetective mode. Despite this, the photovoltaic mode thermal camera has an acceptable level of uncertainty for most thermal imaging applications with an NETD of 4–12 °C and a combined measurement uncertainty of approximately 1% K if a low pixel clock is used. We discuss the various sources of uncertainty and how they might be minimised to further improve the performance of the thermal camera. The thermal camera is a good choice for imaging low frame rate applications that have a wide inter-scene temperature range. |
first_indexed | 2024-03-10T07:13:32Z |
format | Article |
id | doaj.art-7274af36ee934f29b01eb3569dce8be7 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T07:13:32Z |
publishDate | 2021-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-7274af36ee934f29b01eb3569dce8be72023-11-22T15:12:27ZengMDPI AGSensors1424-82202021-09-012118615110.3390/s21186151Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode CameraThomas B. O. Rockett0Nicholas A. Boone1Robert D. Richards2Jon R. Willmott3Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UKDepartment of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UKDepartment of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UKDepartment of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UKThe measurement of a wide temperature range in a scene requires hardware capable of high dynamic range imaging. We describe a novel near-infrared thermal imaging system operating at a wavelength of 940 nm based on a commercial photovoltaic mode high dynamic range camera and analyse its measurement uncertainty. The system is capable of measuring over an unprecedently wide temperature range; however, this comes at the cost of a reduced temperature resolution and increased uncertainty compared to a conventional CMOS camera operating in photodetective mode. Despite this, the photovoltaic mode thermal camera has an acceptable level of uncertainty for most thermal imaging applications with an NETD of 4–12 °C and a combined measurement uncertainty of approximately 1% K if a low pixel clock is used. We discuss the various sources of uncertainty and how they might be minimised to further improve the performance of the thermal camera. The thermal camera is a good choice for imaging low frame rate applications that have a wide inter-scene temperature range.https://www.mdpi.com/1424-8220/21/18/6151thermal imagingradiation thermometrymetrologyinfraredradiometryphotovoltaic camera |
spellingShingle | Thomas B. O. Rockett Nicholas A. Boone Robert D. Richards Jon R. Willmott Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera Sensors thermal imaging radiation thermometry metrology infrared radiometry photovoltaic camera |
title | Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera |
title_full | Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera |
title_fullStr | Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera |
title_full_unstemmed | Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera |
title_short | Thermal Imaging Metrology Using High Dynamic Range Near-Infrared Photovoltaic-Mode Camera |
title_sort | thermal imaging metrology using high dynamic range near infrared photovoltaic mode camera |
topic | thermal imaging radiation thermometry metrology infrared radiometry photovoltaic camera |
url | https://www.mdpi.com/1424-8220/21/18/6151 |
work_keys_str_mv | AT thomasborockett thermalimagingmetrologyusinghighdynamicrangenearinfraredphotovoltaicmodecamera AT nicholasaboone thermalimagingmetrologyusinghighdynamicrangenearinfraredphotovoltaicmodecamera AT robertdrichards thermalimagingmetrologyusinghighdynamicrangenearinfraredphotovoltaicmodecamera AT jonrwillmott thermalimagingmetrologyusinghighdynamicrangenearinfraredphotovoltaicmodecamera |