Mechanical Properties of SMA/PVA-ECC under Uniaxial Tensile Loading

Although shape memory alloy/Polyvinyl alcohol (SMA/PVA) hybrid fiber reinforced cementitious composites, (SMA/PVA-ECC) exhibit excellent crack closure and deformation recovery capabilities, however, the research on their fundamental mechanical properties is still limited. This study investigates the...

Full description

Bibliographic Details
Main Authors: Zhao Yang, Jiankun Li, Yilan Zhong, Xiaolong Qi
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/8/2116
Description
Summary:Although shape memory alloy/Polyvinyl alcohol (SMA/PVA) hybrid fiber reinforced cementitious composites, (SMA/PVA-ECC) exhibit excellent crack closure and deformation recovery capabilities, however, the research on their fundamental mechanical properties is still limited. This study investigates the tensile mechanical properties of SMA/PVA-ECC materials by conducting uniaxial tensile tests, analyzing the failure behavior, stress–strain curves, and characteristic parameters of the specimens, comparing the influence of SMA fiber content and diameter, and establishing a tensile constitutive model. The results show that the residual crack width of SMA/PVA-ECC specimens significantly decreases after unloading, and SMA fiber content and diameter have a significant impact on the tensile properties of the specimens. The comprehensive tensile properties of specimens with a fiber diameter of 0.2 mm and content of 0.2% are the best, with their initial cracking strength, ultimate strength, and strain increasing by 56.4%, 23.6%, and 13.4%, respectively, compared to ECC specimens. The proposed bilinear tensile constitutive model has high accuracy. This study provides a theoretical basis for further research on SMA/PVA-ECC materials.
ISSN:2075-5309