Eigenvalue characterization for a class of boundary value problems

We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characte...

Full description

Bibliographic Details
Main Authors: C. J. Chyan, Johnny Henderson
Format: Article
Language:English
Published: University of Szeged 1999-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=22
_version_ 1797830784124452864
author C. J. Chyan
Johnny Henderson
author_facet C. J. Chyan
Johnny Henderson
author_sort C. J. Chyan
collection DOAJ
description We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characterized so that the boundary value problem has a positive solution.
first_indexed 2024-04-09T13:42:42Z
format Article
id doaj.art-728bfb4f921e4f3085954b062645cc89
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:42:42Z
publishDate 1999-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-728bfb4f921e4f3085954b062645cc892023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751999-01-0119991211310.14232/ejqtde.1999.1.1222Eigenvalue characterization for a class of boundary value problemsC. J. Chyan0Johnny Henderson1Tamkang University, Taipei, TaiwanDepartment of Mathematics, Baylor University, Waco, TX, U.S.A.We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characterized so that the boundary value problem has a positive solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=22
spellingShingle C. J. Chyan
Johnny Henderson
Eigenvalue characterization for a class of boundary value problems
Electronic Journal of Qualitative Theory of Differential Equations
title Eigenvalue characterization for a class of boundary value problems
title_full Eigenvalue characterization for a class of boundary value problems
title_fullStr Eigenvalue characterization for a class of boundary value problems
title_full_unstemmed Eigenvalue characterization for a class of boundary value problems
title_short Eigenvalue characterization for a class of boundary value problems
title_sort eigenvalue characterization for a class of boundary value problems
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=22
work_keys_str_mv AT cjchyan eigenvaluecharacterizationforaclassofboundaryvalueproblems
AT johnnyhenderson eigenvaluecharacterizationforaclassofboundaryvalueproblems