Eigenvalue characterization for a class of boundary value problems
We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characte...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
1999-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=22 |
_version_ | 1797830784124452864 |
---|---|
author | C. J. Chyan Johnny Henderson |
author_facet | C. J. Chyan Johnny Henderson |
author_sort | C. J. Chyan |
collection | DOAJ |
description | We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characterized so that the boundary value problem has a positive solution. |
first_indexed | 2024-04-09T13:42:42Z |
format | Article |
id | doaj.art-728bfb4f921e4f3085954b062645cc89 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:42:42Z |
publishDate | 1999-01-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-728bfb4f921e4f3085954b062645cc892023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751999-01-0119991211310.14232/ejqtde.1999.1.1222Eigenvalue characterization for a class of boundary value problemsC. J. Chyan0Johnny Henderson1Tamkang University, Taipei, TaiwanDepartment of Mathematics, Baylor University, Waco, TX, U.S.A.We consider the $n$'th order ordinary differential equation $(-1)^{n-k} y^{(n)}=\lambda a(t) f(y)$, $t\in[0,1]$, $n\geq 3$ together with the boundary condition $y^{(i)}(0)=0$, $0\leq i\leq k-1$ and $y^{(l)}=0$, $j\leq l\leq j+n-k-1$, for $1\leq j\leq k-1$ fixed. Values of $\lambda$ are characterized so that the boundary value problem has a positive solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=22 |
spellingShingle | C. J. Chyan Johnny Henderson Eigenvalue characterization for a class of boundary value problems Electronic Journal of Qualitative Theory of Differential Equations |
title | Eigenvalue characterization for a class of boundary value problems |
title_full | Eigenvalue characterization for a class of boundary value problems |
title_fullStr | Eigenvalue characterization for a class of boundary value problems |
title_full_unstemmed | Eigenvalue characterization for a class of boundary value problems |
title_short | Eigenvalue characterization for a class of boundary value problems |
title_sort | eigenvalue characterization for a class of boundary value problems |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=22 |
work_keys_str_mv | AT cjchyan eigenvaluecharacterizationforaclassofboundaryvalueproblems AT johnnyhenderson eigenvaluecharacterizationforaclassofboundaryvalueproblems |