Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks

Medical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the la...

Full description

Bibliographic Details
Main Authors: Guillermo Sánchez-Brizuela, Francisco-Javier Santos-Criado, Daniel Sanz-Gobernado, Eusebio de la Fuente-López, Juan-Carlos Fraile, Javier Pérez-Turiel, Ana Cisnal
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/14/5180
_version_ 1797433116138143744
author Guillermo Sánchez-Brizuela
Francisco-Javier Santos-Criado
Daniel Sanz-Gobernado
Eusebio de la Fuente-López
Juan-Carlos Fraile
Javier Pérez-Turiel
Ana Cisnal
author_facet Guillermo Sánchez-Brizuela
Francisco-Javier Santos-Criado
Daniel Sanz-Gobernado
Eusebio de la Fuente-López
Juan-Carlos Fraile
Javier Pérez-Turiel
Ana Cisnal
author_sort Guillermo Sánchez-Brizuela
collection DOAJ
description Medical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the lack of an annotated dataset has hampered its research. In this article, we present a segmentation dataset with 4003 hand-labelled frames from laparoscopic video. To prove the dataset potential, we analyzed several baselines: detection using YOLOv3, coarse segmentation, and segmentation with a U-Net. Our results show that YOLOv3 can be executed in real time but provides a modest recall. Coarse segmentation presents satisfactory results but lacks inference speed. Finally, the U-Net baseline achieves a good speed-quality compromise running above 30 FPS while obtaining an IoU of 0.85. The accuracy reached by U-Net and its execution speed demonstrate that precise and real-time gauze segmentation can be achieved, training convolutional neural networks on the proposed dataset.
first_indexed 2024-03-09T10:12:33Z
format Article
id doaj.art-72903f1cf4ba4705ab5160a6025ef953
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T10:12:33Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-72903f1cf4ba4705ab5160a6025ef9532023-12-01T22:39:53ZengMDPI AGSensors1424-82202022-07-012214518010.3390/s22145180Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural NetworksGuillermo Sánchez-Brizuela0Francisco-Javier Santos-Criado1Daniel Sanz-Gobernado2Eusebio de la Fuente-López3Juan-Carlos Fraile4Javier Pérez-Turiel5Ana Cisnal6Instituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainEscuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Calle de José Gutiérrez Abascal, 2, 28006 Madrid, SpainInstituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainInstituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainInstituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainInstituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainInstituto de las Tecnologías Avanzadas de la Producción (ITAP), Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, SpainMedical instruments detection in laparoscopic video has been carried out to increase the autonomy of surgical robots, evaluate skills or index recordings. However, it has not been extended to surgical gauzes. Gauzes can provide valuable information to numerous tasks in the operating room, but the lack of an annotated dataset has hampered its research. In this article, we present a segmentation dataset with 4003 hand-labelled frames from laparoscopic video. To prove the dataset potential, we analyzed several baselines: detection using YOLOv3, coarse segmentation, and segmentation with a U-Net. Our results show that YOLOv3 can be executed in real time but provides a modest recall. Coarse segmentation presents satisfactory results but lacks inference speed. Finally, the U-Net baseline achieves a good speed-quality compromise running above 30 FPS while obtaining an IoU of 0.85. The accuracy reached by U-Net and its execution speed demonstrate that precise and real-time gauze segmentation can be achieved, training convolutional neural networks on the proposed dataset.https://www.mdpi.com/1424-8220/22/14/5180convolutional neural networksimage segmentationimage object detectionsurgical tool detectionminimally invasive surgery
spellingShingle Guillermo Sánchez-Brizuela
Francisco-Javier Santos-Criado
Daniel Sanz-Gobernado
Eusebio de la Fuente-López
Juan-Carlos Fraile
Javier Pérez-Turiel
Ana Cisnal
Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
Sensors
convolutional neural networks
image segmentation
image object detection
surgical tool detection
minimally invasive surgery
title Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
title_full Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
title_fullStr Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
title_full_unstemmed Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
title_short Gauze Detection and Segmentation in Minimally Invasive Surgery Video Using Convolutional Neural Networks
title_sort gauze detection and segmentation in minimally invasive surgery video using convolutional neural networks
topic convolutional neural networks
image segmentation
image object detection
surgical tool detection
minimally invasive surgery
url https://www.mdpi.com/1424-8220/22/14/5180
work_keys_str_mv AT guillermosanchezbrizuela gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT franciscojaviersantoscriado gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT danielsanzgobernado gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT eusebiodelafuentelopez gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT juancarlosfraile gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT javierperezturiel gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks
AT anacisnal gauzedetectionandsegmentationinminimallyinvasivesurgeryvideousingconvolutionalneuralnetworks