Modeling and Control of Electrowetting Induced Droplet Motion

In this paper, a general methodology for the dynamic study of electrostatically actuated droplets is presented. A simplified 1D transient model is developed to investigate the transient response of a droplet to an actuation voltage and to study the effect of geometrical and fluid-thermal properties...

Full description

Bibliographic Details
Main Authors: Herman Oprins, Bart Vandevelde, Martine Baelmans
Format: Article
Language:English
Published: MDPI AG 2012-03-01
Series:Micromachines
Subjects:
Online Access:http://www.mdpi.com/2072-666X/3/1/150/
Description
Summary:In this paper, a general methodology for the dynamic study of electrostatically actuated droplets is presented. A simplified 1D transient model is developed to investigate the transient response of a droplet to an actuation voltage and to study the effect of geometrical and fluid-thermal properties and electrical parameters on this behavior. First, the general approach for the dynamic droplet motion model is described. All forces acting on the droplet are introduced and presented in a simplified algebraic expression. For the retentive force, the empirically extracted correlations are used, and for the electrostatic actuation force, results from electrostatic finite element simulations are used. The dynamic model is applied to electrowetting induced droplet motion between parallel plates in the case of a single actuation electrode and for an array of electrodes. Using this methodology, the influence of the switching frequency and actuation voltage is studied. Furthermore, a linearized equivalent damped mass—spring model is presented to approximate the dynamic droplet motion. It is shown that the optimal switching frequency can be estimated by twice the natural frequency of the linearized damped mass—spring system.
ISSN:2072-666X