Phytostabilization of Phosphate Mine Wastes Used as a Store-and-Release Cover to Control Acid Mine Drainage in a Semiarid Climate

The abandoned Kettara pyrrhotite mine, located near Marrakech, Morocco, is an acid mine drainage (AMD) producer site. A store-and-release cover system made of phosphate wastes was built to prevent water infiltration and the formation of AMD. This cover system should be vegetated with appropriate pla...

Full description

Bibliographic Details
Main Authors: Meryem El Berkaoui, Mariam El Adnani, Rachid Hakkou, Ahmed Ouhammou, Najib Bendaou, Abdelaziz Smouni
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/10/5/900
Description
Summary:The abandoned Kettara pyrrhotite mine, located near Marrakech, Morocco, is an acid mine drainage (AMD) producer site. A store-and-release cover system made of phosphate wastes was built to prevent water infiltration and the formation of AMD. This cover system should be vegetated with appropriate plants to ensure its long-term sustainability and allow its reintegration in the surrounding ecosystem. Several indigenous plant species were studied. The choice of plant species was based mainly on their tolerance to trace elements contained in the phosphate wastes, and their low capacity to translocate these metals to their aboveground parts in order to limit the risk of pollutants transfer along the food chain. The main metals and metalloids (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) are determined in 13 dominant plants naturally colonizing the store-and-release cover and their rhizospheric soils. The results showed that the phosphate cover contained high concentrations of Cr (138.04 mg/kg), Cu (119.86 mg/kg) and Cd (10.67 mg/kg) exceeding the regulatory thresholds values (Cr > 100 mg/kg, Cu > 100 mg/kg, Cd > 3 mg/kg). The studied plants revealed no hyper-accumulation of metals and metalloids, and lower concentrations in shoots than in roots. Six species (<i>Plantago afra, Festuca ovina, Aizoon hispanicum, Herniaria cinerea, Echium plantagineum</i> and <i>Asphodelus tenuifolius</i>) have bioconcentration factors greater than 1, and weak translocation factors, identifying them as appropriate candidates for phytostabilization of the phosphate cover.
ISSN:2223-7747