Optimasi Training Neural Network Menggunakan Hybrid Adaptive Mutation PSO-BP
Optimization of training neural network using particle swarm optimization (PSO) and genetic algorithm (GA) is a solution backpropagation’s problem. PSO often trapped in premature convergent (convergent at local optimum) and GA takes a long time to achieve convergent and crossover makes worse the...
Main Authors: | Salnan Ratih Asriningtias, Harry Soekotjo Dachlan, Erni Yudaningtyas |
---|---|
Format: | Article |
Language: | English |
Published: |
Departement of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya
2015-08-01
|
Series: | Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) |
Online Access: | https://jurnaleeccis.ub.ac.id/index.php/eeccis/article/view/288 |
Similar Items
-
Optimasi Pencarian Jalur Lalu Lintas Antar Kota di Jawa Timur dengan Algoritma Hybrid J Fuzzy-Floyd Warshall
by: Imam Khairi, et al.
Published: (2014-03-01) -
Optimasi Injeksi Photovoltaic Distributed Generations (PVDG) Menggunakan Metode Algoritma Genetika
by: Muammar Zainuddin, et al.
Published: (2014-08-01) -
Optimasi Jaringan Serat Optik Menggunakan Metode Algoritma Genetika (Studi Kasus Unisma)
by: Diki Okiandri, et al.
Published: (2016-03-01) -
Image Resteoration by BP Neural Based on PSO
Published: (2018-08-01) -
Analisis Pengaruh Frasa Pada Deteksi Emosi Dari Teks Menggunakan Vector Space Model
by: Ranap Sitorus, et al.
Published: (2018-01-01)