Representation of $H$-closed monoreflections in archimedean $ell$-groups with weak unit

The category of the title is called $mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $mathcal{A}$, $Hmathcal{A}$ consists of all homomorphic images of $mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(mathcal{R}, r)$ (meaning $Hmat...

Full description

Bibliographic Details
Main Authors: Bernhard Banaschewski, Anthony W. Hager
Format: Article
Language:English
Published: Shahid Beheshti University 2018-07-01
Series:Categories and General Algebraic Structures with Applications
Subjects:
Online Access:http://cgasa.sbu.ac.ir/article_61475_f777dd362fb1959c3a9aa5115a63f9a9.pdf
Description
Summary:The category of the title is called $mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $mathcal{A}$, $Hmathcal{A}$ consists of all homomorphic images of $mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(mathcal{R}, r)$ (meaning $Hmathcal{R} = mathcal{R}$), about which we show ({em inter alia}): $A in mathcal{A}$ if and  only if $A$ is a countably up-directed union from $H{rF(omega)}$. The meaning of this is then analyzed for two important cases: the maximum essential monoreflection $r = c^{3}$, where $c^{3}F(omega) = C(RR^{omega})$, and $C in H{c(RR^{omega})}$ means $C = C(T)$, for $T$ a closed subspace of $RR^{omega}$; the epicomplete, and maximum, monoreflection, $r = beta$, where $beta F(omega) = B(RR^{omega})$, the Baire functions, and $E in H{B(RR^{omega})}$ means $E$ is {em an} epicompletion (not ``the'') of such a $C(T)$.
ISSN:2345-5853
2345-5861