Detection and Classification of Knee Osteoarthritis

Osteoarthritis (OA) affects nearly 240 million people worldwide. Knee OA is the most common type of arthritis, especially in older adults. Physicians measure the severity of knee OA according to the Kellgren and Lawrence (KL) scale through visual inspection of X-ray or MR images. We propose a semi-a...

Full description

Bibliographic Details
Main Authors: Joseph Humberto Cueva, Darwin Castillo, Héctor Espinós-Morató, David Durán, Patricia Díaz, Vasudevan Lakshminarayanan
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/10/2362
Description
Summary:Osteoarthritis (OA) affects nearly 240 million people worldwide. Knee OA is the most common type of arthritis, especially in older adults. Physicians measure the severity of knee OA according to the Kellgren and Lawrence (KL) scale through visual inspection of X-ray or MR images. We propose a semi-automatic CADx model based on Deep Siamese convolutional neural networks and a fine-tuned ResNet-34 to simultaneously detect OA lesions in the two knees according to the KL scale. The training was done using a public dataset, whereas the validations were performed with a private dataset. Some problems of the imbalanced dataset were solved using transfer learning. The model results average of the multi-class accuracy is 61%, presenting better performance results for classifying classes KL-0, KL-3, and KL-4 than KL-1 and KL-2. The classification results were compared and validated using the classification of experienced radiologists.
ISSN:2075-4418