A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends
Homogeneous charge compression ignition is considered a promising solution to face the increasing regulations imposed by the legislator in the transport sector, thanks to pollutant and CO<sub>2</sub> emissions reduction. In this work, a quasi-dimensional multi-zone HCCI model integrated...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/16/1/265 |
_version_ | 1827760754469634048 |
---|---|
author | Vincenzo De Bellis Enrica Malfi Alfredo Lanotte Massimiliano De Felice Luigi Teodosio Fabio Bozza |
author_facet | Vincenzo De Bellis Enrica Malfi Alfredo Lanotte Massimiliano De Felice Luigi Teodosio Fabio Bozza |
author_sort | Vincenzo De Bellis |
collection | DOAJ |
description | Homogeneous charge compression ignition is considered a promising solution to face the increasing regulations imposed by the legislator in the transport sector, thanks to pollutant and CO<sub>2</sub> emissions reduction. In this work, a quasi-dimensional multi-zone HCCI model integrated with 1D commercial software is developed and validated. It is based on the control mass Lagrangian approach and computes the mixture chemistry evolution through offline tabulation of chemical kinetics (tabulated kinetic of ignition). Thus, the simulation can predict mixture auto-ignition with reduced computational effort and high accuracy. Multi-zone schematization mimics the typical thermal stratification of HCCI engines, controlling the combustion evolution. The model is coupled to sub-models for pollutant emissions estimation. Initially, the tabulated chemistry approach is validated against a chemical kinetics solver applied to a constant-volume homogeneous reactor, considering various fuel blends. The model is then used to simulate the operations of four engines using different fuels (hydrogen, methane, n-heptane, and n-heptane/toluene/ethanol blend), under various boundary conditions. The model predictivity is demonstrated against pressure traces, heat release rate, and noxious emissions. The numerical results showed to adequately agree with measured counterparts (average relative error of 1.3% on in-cylinder pressure peak, average absolute error of 0.95 CAD on pressure peak angle, average relative error of 8.4% on uHCs emissions, absolute error below 1 ppm on NOx emissions) only adapting the thermal stratification to the engines under study. The methodology proved to be a reliable tool to investigate the operation of an HCCI engine, applicable in the development of new engine architecture. |
first_indexed | 2024-03-11T10:02:58Z |
format | Article |
id | doaj.art-72b24dcbcf294aa4a24f2222ad5bacf5 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-11T10:02:58Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-72b24dcbcf294aa4a24f2222ad5bacf52023-11-16T15:16:50ZengMDPI AGEnergies1996-10732022-12-0116126510.3390/en16010265A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel BlendsVincenzo De Bellis0Enrica Malfi1Alfredo Lanotte2Massimiliano De Felice3Luigi Teodosio4Fabio Bozza5Department of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyDepartment of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyDepartment of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyDepartment of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyDepartment of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyDepartment of Industrial Engineering, University of Napoli Federico II, 80121 Napoli, ItalyHomogeneous charge compression ignition is considered a promising solution to face the increasing regulations imposed by the legislator in the transport sector, thanks to pollutant and CO<sub>2</sub> emissions reduction. In this work, a quasi-dimensional multi-zone HCCI model integrated with 1D commercial software is developed and validated. It is based on the control mass Lagrangian approach and computes the mixture chemistry evolution through offline tabulation of chemical kinetics (tabulated kinetic of ignition). Thus, the simulation can predict mixture auto-ignition with reduced computational effort and high accuracy. Multi-zone schematization mimics the typical thermal stratification of HCCI engines, controlling the combustion evolution. The model is coupled to sub-models for pollutant emissions estimation. Initially, the tabulated chemistry approach is validated against a chemical kinetics solver applied to a constant-volume homogeneous reactor, considering various fuel blends. The model is then used to simulate the operations of four engines using different fuels (hydrogen, methane, n-heptane, and n-heptane/toluene/ethanol blend), under various boundary conditions. The model predictivity is demonstrated against pressure traces, heat release rate, and noxious emissions. The numerical results showed to adequately agree with measured counterparts (average relative error of 1.3% on in-cylinder pressure peak, average absolute error of 0.95 CAD on pressure peak angle, average relative error of 8.4% on uHCs emissions, absolute error below 1 ppm on NOx emissions) only adapting the thermal stratification to the engines under study. The methodology proved to be a reliable tool to investigate the operation of an HCCI engine, applicable in the development of new engine architecture.https://www.mdpi.com/1996-1073/16/1/265HCCItabulated chemistryfuel blendsmulti-zone combustion modelNOx emissionunburned hydrocarbon emission |
spellingShingle | Vincenzo De Bellis Enrica Malfi Alfredo Lanotte Massimiliano De Felice Luigi Teodosio Fabio Bozza A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends Energies HCCI tabulated chemistry fuel blends multi-zone combustion model NOx emission unburned hydrocarbon emission |
title | A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends |
title_full | A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends |
title_fullStr | A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends |
title_full_unstemmed | A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends |
title_short | A Tabulated Chemistry Multi-Zone Combustion Model of HCCI Engines Supplied with Pure Fuel and Fuel Blends |
title_sort | tabulated chemistry multi zone combustion model of hcci engines supplied with pure fuel and fuel blends |
topic | HCCI tabulated chemistry fuel blends multi-zone combustion model NOx emission unburned hydrocarbon emission |
url | https://www.mdpi.com/1996-1073/16/1/265 |
work_keys_str_mv | AT vincenzodebellis atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT enricamalfi atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT alfredolanotte atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT massimilianodefelice atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT luigiteodosio atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT fabiobozza atabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT vincenzodebellis tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT enricamalfi tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT alfredolanotte tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT massimilianodefelice tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT luigiteodosio tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends AT fabiobozza tabulatedchemistrymultizonecombustionmodelofhccienginessuppliedwithpurefuelandfuelblends |