Arnautov's problems on semitopological isomorphisms
Semitopological isomorphisms of topological groups were introduced by Arnautov [2], who posed several questions related to compositions of semitopological isomorphisms and about the groups G (we call them Arnautov groups) such that for every group topology on G every semitopological isomorphism wit...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2009-04-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/1789 |
Summary: | Semitopological isomorphisms of topological groups were introduced by Arnautov [2], who posed several questions related to compositions of semitopological isomorphisms and about the groups G (we call them Arnautov groups) such that for every group topology on G every semitopological isomorphism with domain (G, ) is necessarily open (i.e., a topological isomorphism). We propose a different approach to these problems by introducing appropriate new notions, necessary for a deeper understanding of Arnautov groups. This allows us to find some partial answers and many examples. In particular, we discuss the relation with minimal groups and non-topologizable groups. |
---|---|
ISSN: | 1576-9402 1989-4147 |