Fast Method for the Assessment of SRR or ELC-Based Planar Filters: Numerical Analysis and Experiments

We present a general-purpose, fast and computationally efficient numerical method to predict the performance of filters based on electric-LC (ELC) resonators or split-ring resonators (SRR) in a very large frequency range (i.e., 8–40 GHz). In particular, we tackle the problem arising from...

Full description

Bibliographic Details
Main Authors: M. Aldrigo, L. Zappelli, A. Cismaru, M. Dragoman, S. Iordanescu, D. Mladenovic, C. Parvulescu, D. Vasilache, C. H. Joseph, D. Mencarelli, L. Pierantoni, P. Russo
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10186523/
Description
Summary:We present a general-purpose, fast and computationally efficient numerical method to predict the performance of filters based on electric-LC (ELC) resonators or split-ring resonators (SRR) in a very large frequency range (i.e., 8–40 GHz). In particular, we tackle the problem arising from the design of arrays of ELC/SRR-based resonators developed in a multi-layer dielectric stack under a coplanar waveguide excitation. The intrinsic complexity of the analyzed structure (open, multi-layer, and with resonators) makes it unpractical to rely exclusively on full-wave electromagnetic simulations. Furthermore, the presence of multiple modes in propagation can lead to a quite difficult assessment of the optimal simulation conditions. For all these reasons, we propose a method based on the cascade of scattering matrices for all the sub-modules of the considered filters. We demonstrate the efficacy of the proposed numerical technique for a good prediction of the high-frequency performance of the filters. The fabrication on silicon substrate of structures integrating electric-LC resonators (for X band applications) or split-ring resonators (for Ka band applications) serves the purpose of validating the presented method, with a very good agreement between simulations and measurements.
ISSN:2169-3536