Dimension formulas of the highest weight exceptional Lie algebra-modules
Given a complex simple exceptional Lie algebra $ \mathfrak g $, let $ \mathscr V_\lambda $ be an irreducible finite-dimensional $ \mathfrak g $-module with highest weight $ \lambda $. We provide the precise dimension formula of $ \dim \mathscr V_{\lambda} $.
Main Authors: | Yupei Zhang, Yongzhi Luan |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-03-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://aimspress.com/article/doi/10.3934/math.2024490?viewType=HTML |
Similar Items
-
Exceptional lie algebras /
by: Jacobson, Nathan, 1910-
Published: (1971) -
Baker–Campbell–Hausdorff–Dynkin Formula for the Lie Algebra of Rigid Body Displacements
by: Daniel Condurache, et al.
Published: (2020-07-01) -
On simple modules with singular highest weights for so2l+1(K)
by: Sh.Sh. Ibraev, et al.
Published: (2022-03-01) -
Modular lie algebras /
by: Seligman, George B., 1927-
Published: (1967) -
A Lie product type formula in Euclidean Jordan
algebras
by: Tao Jiyuan
Published: (2016-06-01)