Extra Edge Connectivity and Extremal Problems in Education Networks

Extra edge connectivity and diagnosability have been employed to investigate the fault tolerance properties of network structures. The <i>p</i>-extra edge connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><se...

Full description

Bibliographic Details
Main Authors: Hongfang Liu, Jinxia Liang, Kinkar Chandra Das
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3475
_version_ 1827654086102614016
author Hongfang Liu
Jinxia Liang
Kinkar Chandra Das
author_facet Hongfang Liu
Jinxia Liang
Kinkar Chandra Das
author_sort Hongfang Liu
collection DOAJ
description Extra edge connectivity and diagnosability have been employed to investigate the fault tolerance properties of network structures. The <i>p</i>-extra edge connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> was introduced by Fàbrega and Fiol in 1996. In this paper, we find the exact values of <i>p</i>-extra edge connectivity of some special graphs. Moreover, we give some upper and lower bounds for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and graphs with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfenced separators="" open="⌈" close="⌉"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mfenced separators="" open="⌊" close="⌋"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mo>−</mo><mn>1</mn><mo>,</mo><mfenced separators="" open="⌈" close="⌉"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mfenced separators="" open="⌊" close="⌋"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced></mrow></semantics></math></inline-formula> are characterized. Finally, we obtain the three extremal results for the <i>p</i>-extra edge connectivity.
first_indexed 2024-03-09T21:28:37Z
format Article
id doaj.art-72c1138431dd4d4484e48af58bf7212d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:28:37Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-72c1138431dd4d4484e48af58bf7212d2023-11-23T21:02:08ZengMDPI AGMathematics2227-73902022-09-011019347510.3390/math10193475Extra Edge Connectivity and Extremal Problems in Education NetworksHongfang Liu0Jinxia Liang1Kinkar Chandra Das2School of Education, Shaanxi Normal University, Xi’an 710062, ChinaSchool of Mathematics and Statistics, Qinghai Normal University, Xining 810008, ChinaDepartment of Mathematics, Sungkyunkwan University, Suwon 16419, KoreaExtra edge connectivity and diagnosability have been employed to investigate the fault tolerance properties of network structures. The <i>p</i>-extra edge connectivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Γ</mo></semantics></math></inline-formula> was introduced by Fàbrega and Fiol in 1996. In this paper, we find the exact values of <i>p</i>-extra edge connectivity of some special graphs. Moreover, we give some upper and lower bounds for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and graphs with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mi>p</mi></msub><mrow><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mfenced separators="" open="⌈" close="⌉"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mfenced separators="" open="⌊" close="⌋"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mo>−</mo><mn>1</mn><mo>,</mo><mfenced separators="" open="⌈" close="⌉"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced><mfenced separators="" open="⌊" close="⌋"><mfrac><mi>n</mi><mn>2</mn></mfrac></mfenced></mrow></semantics></math></inline-formula> are characterized. Finally, we obtain the three extremal results for the <i>p</i>-extra edge connectivity.https://www.mdpi.com/2227-7390/10/19/3475connectivityp-extra edge connectivitydiametereducation network
spellingShingle Hongfang Liu
Jinxia Liang
Kinkar Chandra Das
Extra Edge Connectivity and Extremal Problems in Education Networks
Mathematics
connectivity
p-extra edge connectivity
diameter
education network
title Extra Edge Connectivity and Extremal Problems in Education Networks
title_full Extra Edge Connectivity and Extremal Problems in Education Networks
title_fullStr Extra Edge Connectivity and Extremal Problems in Education Networks
title_full_unstemmed Extra Edge Connectivity and Extremal Problems in Education Networks
title_short Extra Edge Connectivity and Extremal Problems in Education Networks
title_sort extra edge connectivity and extremal problems in education networks
topic connectivity
p-extra edge connectivity
diameter
education network
url https://www.mdpi.com/2227-7390/10/19/3475
work_keys_str_mv AT hongfangliu extraedgeconnectivityandextremalproblemsineducationnetworks
AT jinxialiang extraedgeconnectivityandextremalproblemsineducationnetworks
AT kinkarchandradas extraedgeconnectivityandextremalproblemsineducationnetworks