Two Sides to the Same Coin—Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells

Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature—inability to induce drug resistance in cancer cells. The aim of the study was to assess bio...

Full description

Bibliographic Details
Main Authors: Magdalena Matysiak-Kucharek, Magdalena Czajka, Barbara Jodłowska-Jędrych, Krzysztof Sawicki, Paulina Wojtyła-Buciora, Marcin Kruszewski, Lucyna Kapka-Skrzypczak
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/25/10/2375
Description
Summary:Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature—inability to induce drug resistance in cancer cells. The aim of the study was to assess biological activity of AgNPs against MDA-MB-436 cells. The cells were derived from triple-negative breast cancer, a type of breast cancer with poor prognosis and is particularly difficult to cure. AgNPs were toxic to MDA-MB-436 cells and the probable mechanism of toxicity was the induction of oxidative stress. These promising effects, giving the opportunity to use AgNPs as an anti-cancer agent should, however, be treated with caution in the light of further results. Namely, the treatment of MDA-MB-436 cells with AgNPs was associated with the increased secretion of several cytokines and chemokines, which were important in breast cancer metastasis. Finally, changes in the actin cytoskeleton of MDA-MB-436 cells under the influence of AgNPs treatment were also observed.
ISSN:1420-3049