Existence of Traveling Waves of a Diffusive Susceptible–Infected–Symptomatic–Recovered Epidemic Model with Temporal Delay

The aim of this article is to investigate the existence of traveling waves of a diffusive model that represents the transmission of a virus in a determined population composed of the following populations: susceptible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"...

Full description

Bibliographic Details
Main Authors: Julio C. Miranda, Abraham J. Arenas, Gilberto González-Parra, Luis Miguel Villada
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/5/710
Description
Summary:The aim of this article is to investigate the existence of traveling waves of a diffusive model that represents the transmission of a virus in a determined population composed of the following populations: susceptible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>S</mi><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> infected <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>I</mi><mo>)</mo><mo>,</mo></mrow></semantics></math></inline-formula> asymptomatic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and recovered <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>R</mi><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> An analytical study is performed, where the existence of solutions of traveling waves in a bounded domain is demonstrated. We use the upper and lower coupled solutions method to achieve this aim. The existence and local asymptotic stability of the endemic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>e</mi></msub></semantics></math></inline-formula>) and disease-free <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>E</mi><mn>0</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula> equilibrium states are also determined. The constructed model includes a discrete-time delay that is related to the incubation stage of a virus. We find the crucial basic reproduction number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">R</mi><mn>0</mn></msub></semantics></math></inline-formula>, which determines the local stability of the steady states. We perform numerical simulations of the model in order to provide additional support to the theoretical results and observe the traveling waves. The model can be used to study the dynamics of SARS-CoV-2 and other viruses where the disease evolution has a similar behavior.
ISSN:2227-7390