Nitrate and Ammonium Deposition in the Midwestern Fragmented Forest

Whereas the impacts of N deposition on forest ecosystems have been well studied in remote areas in predominantly forested landscapes, we know relatively less about the impacts of N deposition on forests in heavily human-modified landscapes. We studied the influence of adjacent land use, local point...

Full description

Bibliographic Details
Main Authors: Luis D. Rivera-Cubero, Asia L. Dowtin, David E. Rothstein
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/3/512
Description
Summary:Whereas the impacts of N deposition on forest ecosystems have been well studied in remote areas in predominantly forested landscapes, we know relatively less about the impacts of N deposition on forests in heavily human-modified landscapes. We studied the influence of adjacent land use, local point sources, and woodlot stand structure on subcanopy N transport and enrichment via throughfall in three woodlot fragments in southern Lower Michigan, USA. We found that one site had markedly higher TF N concentrations compared to the other two; however, our data indicate that elevated TF concentrations resulted from differences in tree species composition, rather than differences in surrounding land use. Specifically, we observed that the local abundance of basswood (<i>Tilia americana</i>) was positively associated and the local abundance of northern red oak (<i>Quercus rubra</i>) was negatively associated with TF N concentrations. One site had markedly greater TF N fluxes compared to the other two, which was driven by a lack of understory vegetation, possibly due to higher deer browsing at this site. Together, the results of this study demonstrated that TF N concentrations and fluxes were more strongly influenced by the internal characteristics of fragmented woodlots, such as forest structure and species composition, than by the surrounding land use.
ISSN:1999-4907