Synthesis and Characterization of a Novel Hydroquinone Sulfonate-Based Redox Active Ionic Liquid

Introducing redox-active moieties into an ionic liquid (IL) structure is an exciting and attractive approach that has received increasing interest over recent years for a various range of energy applications. The so-called redox-active ionic liquids (RAILs) provide a highly versatile platform to pot...

Full description

Bibliographic Details
Main Authors: Farida H. Aidoudi, Alessandro Sinopoli, Muthumeenal Arunachalam, Belabbes Merzougui, Brahim Aïssa
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/12/3259
Description
Summary:Introducing redox-active moieties into an ionic liquid (IL) structure is an exciting and attractive approach that has received increasing interest over recent years for a various range of energy applications. The so-called redox-active ionic liquids (RAILs) provide a highly versatile platform to potentially create multifunctional electroactive materials. Ionic liquids are molten salts consisting of ionic species, often having a melting point lower than 100 °C. Such liquids are obtained by combining a bulky asymmetric organic cation and a small anion. Here, we report on the synthesis of a novel RAIL, namely 1-butyl-3-methylimidazolium hydroquinone sulfonate ((BMIM)(HQS)). (BMIM)(HQS) was synthesized in a two-step procedure, starting by the quaternization of methylimidazole using butylchloride to produce 1-butyl-3-methylimidazolium chloride ((BMIM)(Cl)), and followed by the anion exchange reaction, where the chloride anion is exchanged with hydroquinone sulfonate. The resulting product was characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, FT-IR spectroscopy, themogravimetric analysis, and differential scanning calorimetry, and shows a high stability up to 340 °C. Its electrochemical behavior was investigated using cyclic voltammetry at different temperatures and its viscosity analysis was also performed at variable temperatures. The electrochemical response of the presented RAIL was found to be temperature dependent and diffusion controlled. Overall, our results demonstrated that (BMIM)(mix of HQS and HSQ) is redox active and possesses high stability and low volatility, leading to the employment of this RAIL without any additional supporting electrolyte or additives.
ISSN:1996-1944