A validated stability-indicating RP-HPLC method for paracetamol and lornoxicam: Application to pharmaceutical dosage forms

A new method for the simultaneous determination of paracetamol (PR) and lornoxicam (LR) has been developed by reversed phase HPLC from the combination drug product. The separation achieved on C18 column using acetonitrile and 0.02 M potassium dihydrogen phosphate was in the ratio of 35:6...

Full description

Bibliographic Details
Main Authors: Karunakaran Kulandaivelu, Navaneethan Gurusamy, Pitchaimuthu Kuppanagounder Elango
Format: Article
Language:English
Published: Association of the Chemical Engineers of Serbia 2014-01-01
Series:Chemical Industry and Chemical Engineering Quarterly
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1451-9372/2014/1451-93721200106K.pdf
Description
Summary:A new method for the simultaneous determination of paracetamol (PR) and lornoxicam (LR) has been developed by reversed phase HPLC from the combination drug product. The separation achieved on C18 column using acetonitrile and 0.02 M potassium dihydrogen phosphate was in the ratio of 35:65 (v/v) as mobile phase at a flow rate of 1.0 mL/min. Both the components were monitored at a single wavelength at 260 nm and the column temperature was maintained at 30°C throughout the analysis. A linear response was found in the concentration range of 125-375 μg/mL for PR and 2-6 μg/mL for LR, with the correlation coefficient of more than 0.999. Although the tablet contained a high dose of PR (500 mg) and a low dose of LR (8 mg), the single HPLC method was developed and the intra as well as inter day precision was obtained at less than 2% of RSD. The accuracy results obtained were between 98% and 102%. The drug was intentionally degraded under acidic, basic, peroxide, thermal, and photolytic conditions. The major degradation observed for both PR and LR under peroxide condition indicated that the drug product is susceptible to oxidation. The degraded peaks were properly resolved from PR and LR. Hence, the method is stability indicating.
ISSN:1451-9372
2217-7434