Unramified extensions of some cyclic quartic fields

In this paper we determine the fourteen unramified extensions for some cyclic quartic fields $K$ whose $2$-class group $C_{K,2}$ is isomorphic to ${\mathbb{Z}}/{2{\mathbb{Z}}}\times {\mathbb{Z}}/{2{\mathbb{Z}}} \times {\mathbb{Z}}/{2{\mathbb{Z}}}$  and to characterize the generators of $C_{K,2}$.

Bibliographic Details
Main Authors: Mohammed Talbi, Abdelmalek Azizi, Idriss Jerrari
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2018-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31299
_version_ 1819265048773656576
author Mohammed Talbi
Abdelmalek Azizi
Idriss Jerrari
author_facet Mohammed Talbi
Abdelmalek Azizi
Idriss Jerrari
author_sort Mohammed Talbi
collection DOAJ
description In this paper we determine the fourteen unramified extensions for some cyclic quartic fields $K$ whose $2$-class group $C_{K,2}$ is isomorphic to ${\mathbb{Z}}/{2{\mathbb{Z}}}\times {\mathbb{Z}}/{2{\mathbb{Z}}} \times {\mathbb{Z}}/{2{\mathbb{Z}}}$  and to characterize the generators of $C_{K,2}$.
first_indexed 2024-12-23T20:39:11Z
format Article
id doaj.art-72fa3345367940ef82db7ecbc5343833
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-23T20:39:11Z
publishDate 2018-01-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-72fa3345367940ef82db7ecbc53438332022-12-21T17:31:59ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882018-01-0136121522110.5269/bspm.v36i1.3129915360Unramified extensions of some cyclic quartic fieldsMohammed Talbi0Abdelmalek Azizi1Idriss Jerrari2Mohamed First UniversityMohamed First UniversityRegional center of Education and TrainingIn this paper we determine the fourteen unramified extensions for some cyclic quartic fields $K$ whose $2$-class group $C_{K,2}$ is isomorphic to ${\mathbb{Z}}/{2{\mathbb{Z}}}\times {\mathbb{Z}}/{2{\mathbb{Z}}} \times {\mathbb{Z}}/{2{\mathbb{Z}}}$  and to characterize the generators of $C_{K,2}$.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31299Unramified extensionsHilbert $2$-Class Field
spellingShingle Mohammed Talbi
Abdelmalek Azizi
Idriss Jerrari
Unramified extensions of some cyclic quartic fields
Boletim da Sociedade Paranaense de Matemática
Unramified extensions
Hilbert $2$-Class Field
title Unramified extensions of some cyclic quartic fields
title_full Unramified extensions of some cyclic quartic fields
title_fullStr Unramified extensions of some cyclic quartic fields
title_full_unstemmed Unramified extensions of some cyclic quartic fields
title_short Unramified extensions of some cyclic quartic fields
title_sort unramified extensions of some cyclic quartic fields
topic Unramified extensions
Hilbert $2$-Class Field
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/31299
work_keys_str_mv AT mohammedtalbi unramifiedextensionsofsomecyclicquarticfields
AT abdelmalekazizi unramifiedextensionsofsomecyclicquarticfields
AT idrissjerrari unramifiedextensionsofsomecyclicquarticfields