Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
Mechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combination...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/10/3/558 |
_version_ | 1828785277421748224 |
---|---|
author | Mikko Ruoho Janne-Petteri Niemelä Carlos Guerra-Nunez Natalia Tarasiuk Georgina Robertson Aidan A. Taylor Xavier Maeder Czeslaw Kapusta Johann Michler Ivo Utke |
author_facet | Mikko Ruoho Janne-Petteri Niemelä Carlos Guerra-Nunez Natalia Tarasiuk Georgina Robertson Aidan A. Taylor Xavier Maeder Czeslaw Kapusta Johann Michler Ivo Utke |
author_sort | Mikko Ruoho |
collection | DOAJ |
description | Mechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combinations via uniaxial tensile testing and Weibull statistics. The crack onset strains and interfacial shear strains were studied, and for crack onset strain, TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> bilayer films exhibited the highest values. The films adhered well to the polyimide carrier substrates, as delamination of the films was not observed. For Al<sub>2</sub>O<sub>3</sub> films, higher deposition temperatures resulted in higher crack onset strain and cohesive strain values, which was explained by the temperature dependence of the residual strain. Doping Y<sub>2</sub>O<sub>3</sub> with Al or nanolaminating it with Al<sub>2</sub>O<sub>3</sub> enabled control over the crystal size of Y<sub>2</sub>O<sub>3</sub>, and provided us with means for improving the mechanical properties of the Y<sub>2</sub>O<sub>3</sub> films. Tensile fracture toughness and fracture energy are reported for Al<sub>2</sub>O<sub>3</sub> films grown at 135 °C, 155 °C, and 220 °C. We present thin-film engineering via multilayering and residual-strain control in order to tailor the mechanical properties of thin-film systems for applications requiring mechanical stretchability and flexibility. |
first_indexed | 2024-12-11T23:48:03Z |
format | Article |
id | doaj.art-7309a26bf89b4d88ae94163e979ca686 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-12-11T23:48:03Z |
publishDate | 2020-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-7309a26bf89b4d88ae94163e979ca6862022-12-22T00:45:34ZengMDPI AGNanomaterials2079-49912020-03-0110355810.3390/nano10030558nano10030558Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal OxidesMikko Ruoho0Janne-Petteri Niemelä1Carlos Guerra-Nunez2Natalia Tarasiuk3Georgina Robertson4Aidan A. Taylor5Xavier Maeder6Czeslaw Kapusta7Johann Michler8Ivo Utke9Empa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandMaterials Department, University of California, Santa Barbara, CA 93106, USAEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandAGH University of Science and Technology Krakow, Faculty of Physics and Applied Computer Science, Al.Mickiewicza 30, 30-059 Kraków, PolandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandMechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combinations via uniaxial tensile testing and Weibull statistics. The crack onset strains and interfacial shear strains were studied, and for crack onset strain, TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> bilayer films exhibited the highest values. The films adhered well to the polyimide carrier substrates, as delamination of the films was not observed. For Al<sub>2</sub>O<sub>3</sub> films, higher deposition temperatures resulted in higher crack onset strain and cohesive strain values, which was explained by the temperature dependence of the residual strain. Doping Y<sub>2</sub>O<sub>3</sub> with Al or nanolaminating it with Al<sub>2</sub>O<sub>3</sub> enabled control over the crystal size of Y<sub>2</sub>O<sub>3</sub>, and provided us with means for improving the mechanical properties of the Y<sub>2</sub>O<sub>3</sub> films. Tensile fracture toughness and fracture energy are reported for Al<sub>2</sub>O<sub>3</sub> films grown at 135 °C, 155 °C, and 220 °C. We present thin-film engineering via multilayering and residual-strain control in order to tailor the mechanical properties of thin-film systems for applications requiring mechanical stretchability and flexibility.https://www.mdpi.com/2079-4991/10/3/558atomic layer depositioncrack onset strainfracture mechanicsinterfacial shear strainresidual strainsaturated crack densityal<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-znonanolaminateuniaxial tensile strain |
spellingShingle | Mikko Ruoho Janne-Petteri Niemelä Carlos Guerra-Nunez Natalia Tarasiuk Georgina Robertson Aidan A. Taylor Xavier Maeder Czeslaw Kapusta Johann Michler Ivo Utke Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides Nanomaterials atomic layer deposition crack onset strain fracture mechanics interfacial shear strain residual strain saturated crack density al<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-zno nanolaminate uniaxial tensile strain |
title | Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides |
title_full | Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides |
title_fullStr | Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides |
title_full_unstemmed | Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides |
title_short | Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides |
title_sort | thin film engineering of mechanical fragmentation properties of atomic layer deposited metal oxides |
topic | atomic layer deposition crack onset strain fracture mechanics interfacial shear strain residual strain saturated crack density al<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-zno nanolaminate uniaxial tensile strain |
url | https://www.mdpi.com/2079-4991/10/3/558 |
work_keys_str_mv | AT mikkoruoho thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT jannepetteriniemela thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT carlosguerranunez thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT nataliatarasiuk thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT georginarobertson thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT aidanataylor thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT xaviermaeder thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT czeslawkapusta thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT johannmichler thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides AT ivoutke thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides |