Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides

Mechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combination...

Full description

Bibliographic Details
Main Authors: Mikko Ruoho, Janne-Petteri Niemelä, Carlos Guerra-Nunez, Natalia Tarasiuk, Georgina Robertson, Aidan A. Taylor, Xavier Maeder, Czeslaw Kapusta, Johann Michler, Ivo Utke
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/3/558
_version_ 1828785277421748224
author Mikko Ruoho
Janne-Petteri Niemelä
Carlos Guerra-Nunez
Natalia Tarasiuk
Georgina Robertson
Aidan A. Taylor
Xavier Maeder
Czeslaw Kapusta
Johann Michler
Ivo Utke
author_facet Mikko Ruoho
Janne-Petteri Niemelä
Carlos Guerra-Nunez
Natalia Tarasiuk
Georgina Robertson
Aidan A. Taylor
Xavier Maeder
Czeslaw Kapusta
Johann Michler
Ivo Utke
author_sort Mikko Ruoho
collection DOAJ
description Mechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combinations via uniaxial tensile testing and Weibull statistics. The crack onset strains and interfacial shear strains were studied, and for crack onset strain, TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> bilayer films exhibited the highest values. The films adhered well to the polyimide carrier substrates, as delamination of the films was not observed. For Al<sub>2</sub>O<sub>3</sub> films, higher deposition temperatures resulted in higher crack onset strain and cohesive strain values, which was explained by the temperature dependence of the residual strain. Doping Y<sub>2</sub>O<sub>3</sub> with Al or nanolaminating it with Al<sub>2</sub>O<sub>3</sub> enabled control over the crystal size of Y<sub>2</sub>O<sub>3</sub>, and provided us with means for improving the mechanical properties of the Y<sub>2</sub>O<sub>3</sub> films. Tensile fracture toughness and fracture energy are reported for Al<sub>2</sub>O<sub>3</sub> films grown at 135 &#176;C, 155 &#176;C, and 220 &#176;C. We present thin-film engineering via multilayering and residual-strain control in order to tailor the mechanical properties of thin-film systems for applications requiring mechanical stretchability and flexibility.
first_indexed 2024-12-11T23:48:03Z
format Article
id doaj.art-7309a26bf89b4d88ae94163e979ca686
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-12-11T23:48:03Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-7309a26bf89b4d88ae94163e979ca6862022-12-22T00:45:34ZengMDPI AGNanomaterials2079-49912020-03-0110355810.3390/nano10030558nano10030558Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal OxidesMikko Ruoho0Janne-Petteri Niemelä1Carlos Guerra-Nunez2Natalia Tarasiuk3Georgina Robertson4Aidan A. Taylor5Xavier Maeder6Czeslaw Kapusta7Johann Michler8Ivo Utke9Empa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandMaterials Department, University of California, Santa Barbara, CA 93106, USAEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandAGH University of Science and Technology Krakow, Faculty of Physics and Applied Computer Science, Al.Mickiewicza 30, 30-059 Kraków, PolandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandEmpa–Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, SwitzerlandMechanical fracture properties were studied for the common atomic-layer-deposited Al<sub>2</sub>O<sub>3</sub>, ZnO, TiO<sub>2</sub>, ZrO<sub>2</sub>, and Y<sub>2</sub>O<sub>3</sub> thin films, and selected multilayer combinations via uniaxial tensile testing and Weibull statistics. The crack onset strains and interfacial shear strains were studied, and for crack onset strain, TiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> bilayer films exhibited the highest values. The films adhered well to the polyimide carrier substrates, as delamination of the films was not observed. For Al<sub>2</sub>O<sub>3</sub> films, higher deposition temperatures resulted in higher crack onset strain and cohesive strain values, which was explained by the temperature dependence of the residual strain. Doping Y<sub>2</sub>O<sub>3</sub> with Al or nanolaminating it with Al<sub>2</sub>O<sub>3</sub> enabled control over the crystal size of Y<sub>2</sub>O<sub>3</sub>, and provided us with means for improving the mechanical properties of the Y<sub>2</sub>O<sub>3</sub> films. Tensile fracture toughness and fracture energy are reported for Al<sub>2</sub>O<sub>3</sub> films grown at 135 &#176;C, 155 &#176;C, and 220 &#176;C. We present thin-film engineering via multilayering and residual-strain control in order to tailor the mechanical properties of thin-film systems for applications requiring mechanical stretchability and flexibility.https://www.mdpi.com/2079-4991/10/3/558atomic layer depositioncrack onset strainfracture mechanicsinterfacial shear strainresidual strainsaturated crack densityal<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-znonanolaminateuniaxial tensile strain
spellingShingle Mikko Ruoho
Janne-Petteri Niemelä
Carlos Guerra-Nunez
Natalia Tarasiuk
Georgina Robertson
Aidan A. Taylor
Xavier Maeder
Czeslaw Kapusta
Johann Michler
Ivo Utke
Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
Nanomaterials
atomic layer deposition
crack onset strain
fracture mechanics
interfacial shear strain
residual strain
saturated crack density
al<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-zno
nanolaminate
uniaxial tensile strain
title Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
title_full Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
title_fullStr Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
title_full_unstemmed Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
title_short Thin-Film Engineering of Mechanical Fragmentation Properties of Atomic-Layer-Deposited Metal Oxides
title_sort thin film engineering of mechanical fragmentation properties of atomic layer deposited metal oxides
topic atomic layer deposition
crack onset strain
fracture mechanics
interfacial shear strain
residual strain
saturated crack density
al<sub>2</sub>o<sub>3</sub>-y<sub>2</sub>o<sub>3</sub>-zro<sub>2</sub>-tio<sub>2</sub>-zno
nanolaminate
uniaxial tensile strain
url https://www.mdpi.com/2079-4991/10/3/558
work_keys_str_mv AT mikkoruoho thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT jannepetteriniemela thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT carlosguerranunez thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT nataliatarasiuk thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT georginarobertson thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT aidanataylor thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT xaviermaeder thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT czeslawkapusta thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT johannmichler thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides
AT ivoutke thinfilmengineeringofmechanicalfragmentationpropertiesofatomiclayerdepositedmetaloxides