Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.

Functional brain network studies using the Blood Oxygen-Level Dependent (BOLD) signal from functional Magnetic Resonance Imaging (fMRI) are becoming increasingly prevalent in research on the neural basis of human cognition. An important problem in functional brain network analysis is to understand d...

Full description

Bibliographic Details
Main Authors: Wei Tang, Steven L Bressler, Chad M Sylvester, Gordon L Shulman, Maurizio Corbetta
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS Computational Biology
Online Access:http://europepmc.org/articles/PMC3359965?pdf=render
_version_ 1811216161450229760
author Wei Tang
Steven L Bressler
Chad M Sylvester
Gordon L Shulman
Maurizio Corbetta
author_facet Wei Tang
Steven L Bressler
Chad M Sylvester
Gordon L Shulman
Maurizio Corbetta
author_sort Wei Tang
collection DOAJ
description Functional brain network studies using the Blood Oxygen-Level Dependent (BOLD) signal from functional Magnetic Resonance Imaging (fMRI) are becoming increasingly prevalent in research on the neural basis of human cognition. An important problem in functional brain network analysis is to understand directed functional interactions between brain regions during cognitive performance. This problem has important implications for understanding top-down influences from frontal and parietal control regions to visual occipital cortex in visuospatial attention, the goal motivating the present study. A common approach to measuring directed functional interactions between two brain regions is to first create nodal signals by averaging the BOLD signals of all the voxels in each region, and to then measure directed functional interactions between the nodal signals. Another approach, that avoids averaging, is to measure directed functional interactions between all pairwise combinations of voxels in the two regions. Here we employ an alternative approach that avoids the drawbacks of both averaging and pairwise voxel measures. In this approach, we first use the Least Absolute Shrinkage Selection Operator (LASSO) to pre-select voxels for analysis, then compute a Multivariate Vector AutoRegressive (MVAR) model from the time series of the selected voxels, and finally compute summary Granger Causality (GC) statistics from the model to represent directed interregional interactions. We demonstrate the effectiveness of this approach on both simulated and empirical fMRI data. We also show that averaging regional BOLD activity to create a nodal signal may lead to biased GC estimation of directed interregional interactions. The approach presented here makes it feasible to compute GC between brain regions without the need for averaging. Our results suggest that in the analysis of functional brain networks, careful consideration must be given to the way that network nodes and edges are defined because those definitions may have important implications for the validity of the analysis.
first_indexed 2024-04-12T06:33:50Z
format Article
id doaj.art-7319ba2fbdae4f83b115e2c7963f0066
institution Directory Open Access Journal
issn 1553-734X
1553-7358
language English
last_indexed 2024-04-12T06:33:50Z
publishDate 2012-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj.art-7319ba2fbdae4f83b115e2c7963f00662022-12-22T03:43:56ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582012-01-0185e100251310.1371/journal.pcbi.1002513Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.Wei TangSteven L BresslerChad M SylvesterGordon L ShulmanMaurizio CorbettaFunctional brain network studies using the Blood Oxygen-Level Dependent (BOLD) signal from functional Magnetic Resonance Imaging (fMRI) are becoming increasingly prevalent in research on the neural basis of human cognition. An important problem in functional brain network analysis is to understand directed functional interactions between brain regions during cognitive performance. This problem has important implications for understanding top-down influences from frontal and parietal control regions to visual occipital cortex in visuospatial attention, the goal motivating the present study. A common approach to measuring directed functional interactions between two brain regions is to first create nodal signals by averaging the BOLD signals of all the voxels in each region, and to then measure directed functional interactions between the nodal signals. Another approach, that avoids averaging, is to measure directed functional interactions between all pairwise combinations of voxels in the two regions. Here we employ an alternative approach that avoids the drawbacks of both averaging and pairwise voxel measures. In this approach, we first use the Least Absolute Shrinkage Selection Operator (LASSO) to pre-select voxels for analysis, then compute a Multivariate Vector AutoRegressive (MVAR) model from the time series of the selected voxels, and finally compute summary Granger Causality (GC) statistics from the model to represent directed interregional interactions. We demonstrate the effectiveness of this approach on both simulated and empirical fMRI data. We also show that averaging regional BOLD activity to create a nodal signal may lead to biased GC estimation of directed interregional interactions. The approach presented here makes it feasible to compute GC between brain regions without the need for averaging. Our results suggest that in the analysis of functional brain networks, careful consideration must be given to the way that network nodes and edges are defined because those definitions may have important implications for the validity of the analysis.http://europepmc.org/articles/PMC3359965?pdf=render
spellingShingle Wei Tang
Steven L Bressler
Chad M Sylvester
Gordon L Shulman
Maurizio Corbetta
Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
PLoS Computational Biology
title Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
title_full Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
title_fullStr Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
title_full_unstemmed Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
title_short Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
title_sort measuring granger causality between cortical regions from voxelwise fmri bold signals with lasso
url http://europepmc.org/articles/PMC3359965?pdf=render
work_keys_str_mv AT weitang measuringgrangercausalitybetweencorticalregionsfromvoxelwisefmriboldsignalswithlasso
AT stevenlbressler measuringgrangercausalitybetweencorticalregionsfromvoxelwisefmriboldsignalswithlasso
AT chadmsylvester measuringgrangercausalitybetweencorticalregionsfromvoxelwisefmriboldsignalswithlasso
AT gordonlshulman measuringgrangercausalitybetweencorticalregionsfromvoxelwisefmriboldsignalswithlasso
AT mauriziocorbetta measuringgrangercausalitybetweencorticalregionsfromvoxelwisefmriboldsignalswithlasso