Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils

<p>Ameliorating soil acidity using a combination of lime and organic amendments (OAs) can be an alternative to lime alone, but determining the appropriate OA rates can be difficult. We developed a new method for calculating the combined application rate of lime and OAs (wheat straw, faba bean...

Full description

Bibliographic Details
Main Authors: B. Iticha, L. M. Mosley, P. Marschner
Format: Article
Language:English
Published: Copernicus Publications 2024-01-01
Series:SOIL
Online Access:https://soil.copernicus.org/articles/10/33/2024/soil-10-33-2024.pdf
_version_ 1797354877709451264
author B. Iticha
L. M. Mosley
P. Marschner
author_facet B. Iticha
L. M. Mosley
P. Marschner
author_sort B. Iticha
collection DOAJ
description <p>Ameliorating soil acidity using a combination of lime and organic amendments (OAs) can be an alternative to lime alone, but determining the appropriate OA rates can be difficult. We developed a new method for calculating the combined application rate of lime and OAs (wheat straw, faba bean straw, blended poultry litter, biochar, and compost) that is based on the titratable alkalinity of OAs and the equilibrium lime buffer capacity (LBC<span class="inline-formula"><sub>eq</sub></span>) of acidic soils. The effect of calculated soil amendment rates on soil pH was validated at soil water contents of 60 %, 100 %, and 150 % of field capacity (FC). The soil used to develop and validate the method was a sandy loam with a soil pH in deionised water (pH<span class="inline-formula"><sub>W</sub></span>) of 4.84 and a soil pH in 0.01 M CaCl<span class="inline-formula"><sub>2</sub></span> solution (pH<span class="inline-formula"><sub>Ca</sub></span>) of 4.21. The LBC<span class="inline-formula"><sub>eq</sub></span> of the soil was 1657 mg CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> pH<span class="inline-formula"><sup>−1</sup></span> (where “CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> pH<span class="inline-formula"><sup>−1</sup></span>” denotes the amount of lime required to raise the pH of 1 kg of soil by one unit). The titratable alkalinity of the OAs ranged from 11.7 cmol H<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi mathvariant="normal">eq</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="11pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2023a2764e3859f9c1c18ff7ef70eb5f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-10-33-2024-ie00001.svg" width="11pt" height="16pt" src="soil-10-33-2024-ie00001.png"/></svg:svg></span></span> kg<span class="inline-formula"><sup>−1</sup></span> for wheat straw to 357 cmol H<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi mathvariant="normal">eq</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="11pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="28d78bd9a932cf6a13e83af85ce5a439"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-10-33-2024-ie00002.svg" width="11pt" height="16pt" src="soil-10-33-2024-ie00002.png"/></svg:svg></span></span> kg<span class="inline-formula"><sup>−1</sup></span> for compost. At 60 % FC, faba bean and wheat straw amendment increased the soil pH<span class="inline-formula"><sub>W</sub></span> to 6.48 and 6.42, respectively, but lower pH values were reached in soil amended with less biodegradable or resistant OAs (ROAs) (i.e. blended poultry litter, biochar, and compost). At 150 % FC, the two straws increased the soil pH<span class="inline-formula"><sub>W</sub></span> to only 5.93 and 5.75, respectively, possibly due to slower decomposition under submerged conditions, resulting in limited alkalinity production, whereas amendment with ROAs produced pH<span class="inline-formula"><sub>W</sub></span> values close to 6.5. With an increasing lime-equivalent value (LEV) of the OA, from 5.8 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> (wheat straw) to 179 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> (compost), the lime requirement to reach pH<span class="inline-formula"><sub>W</sub></span> 6.5 in lime–OA combinations decreased from 2.72 to 0.09 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span>. The developed method was shown to be effective in determining the appropriate rates of OAs (with or without additional lime) for the management of acidic sandy loam soils in this study and highlights the importance of the soil water content with respect to its acid-neutralising effect.</p>
first_indexed 2024-03-08T13:56:09Z
format Article
id doaj.art-731a7440f0d04822a27c8e3a07d5e7ef
institution Directory Open Access Journal
issn 2199-3971
2199-398X
language English
last_indexed 2024-03-08T13:56:09Z
publishDate 2024-01-01
publisher Copernicus Publications
record_format Article
series SOIL
spelling doaj.art-731a7440f0d04822a27c8e3a07d5e7ef2024-01-15T12:46:25ZengCopernicus PublicationsSOIL2199-39712199-398X2024-01-0110334710.5194/soil-10-33-2024Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soilsB. Iticha0L. M. Mosley1P. Marschner2School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, AustraliaAcid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5064, AustraliaSchool of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia<p>Ameliorating soil acidity using a combination of lime and organic amendments (OAs) can be an alternative to lime alone, but determining the appropriate OA rates can be difficult. We developed a new method for calculating the combined application rate of lime and OAs (wheat straw, faba bean straw, blended poultry litter, biochar, and compost) that is based on the titratable alkalinity of OAs and the equilibrium lime buffer capacity (LBC<span class="inline-formula"><sub>eq</sub></span>) of acidic soils. The effect of calculated soil amendment rates on soil pH was validated at soil water contents of 60 %, 100 %, and 150 % of field capacity (FC). The soil used to develop and validate the method was a sandy loam with a soil pH in deionised water (pH<span class="inline-formula"><sub>W</sub></span>) of 4.84 and a soil pH in 0.01 M CaCl<span class="inline-formula"><sub>2</sub></span> solution (pH<span class="inline-formula"><sub>Ca</sub></span>) of 4.21. The LBC<span class="inline-formula"><sub>eq</sub></span> of the soil was 1657 mg CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> pH<span class="inline-formula"><sup>−1</sup></span> (where “CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> pH<span class="inline-formula"><sup>−1</sup></span>” denotes the amount of lime required to raise the pH of 1 kg of soil by one unit). The titratable alkalinity of the OAs ranged from 11.7 cmol H<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi mathvariant="normal">eq</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="11pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2023a2764e3859f9c1c18ff7ef70eb5f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-10-33-2024-ie00001.svg" width="11pt" height="16pt" src="soil-10-33-2024-ie00001.png"/></svg:svg></span></span> kg<span class="inline-formula"><sup>−1</sup></span> for wheat straw to 357 cmol H<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mi mathvariant="normal">eq</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="11pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="28d78bd9a932cf6a13e83af85ce5a439"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="soil-10-33-2024-ie00002.svg" width="11pt" height="16pt" src="soil-10-33-2024-ie00002.png"/></svg:svg></span></span> kg<span class="inline-formula"><sup>−1</sup></span> for compost. At 60 % FC, faba bean and wheat straw amendment increased the soil pH<span class="inline-formula"><sub>W</sub></span> to 6.48 and 6.42, respectively, but lower pH values were reached in soil amended with less biodegradable or resistant OAs (ROAs) (i.e. blended poultry litter, biochar, and compost). At 150 % FC, the two straws increased the soil pH<span class="inline-formula"><sub>W</sub></span> to only 5.93 and 5.75, respectively, possibly due to slower decomposition under submerged conditions, resulting in limited alkalinity production, whereas amendment with ROAs produced pH<span class="inline-formula"><sub>W</sub></span> values close to 6.5. With an increasing lime-equivalent value (LEV) of the OA, from 5.8 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> (wheat straw) to 179 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span> (compost), the lime requirement to reach pH<span class="inline-formula"><sub>W</sub></span> 6.5 in lime–OA combinations decreased from 2.72 to 0.09 g CaCO<span class="inline-formula"><sub>3</sub></span> kg<span class="inline-formula"><sup>−1</sup></span>. The developed method was shown to be effective in determining the appropriate rates of OAs (with or without additional lime) for the management of acidic sandy loam soils in this study and highlights the importance of the soil water content with respect to its acid-neutralising effect.</p>https://soil.copernicus.org/articles/10/33/2024/soil-10-33-2024.pdf
spellingShingle B. Iticha
L. M. Mosley
P. Marschner
Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
SOIL
title Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
title_full Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
title_fullStr Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
title_full_unstemmed Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
title_short Combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
title_sort combining lime and organic amendments based on titratable alkalinity for efficient amelioration of acidic soils
url https://soil.copernicus.org/articles/10/33/2024/soil-10-33-2024.pdf
work_keys_str_mv AT biticha combininglimeandorganicamendmentsbasedontitratablealkalinityforefficientameliorationofacidicsoils
AT lmmosley combininglimeandorganicamendmentsbasedontitratablealkalinityforefficientameliorationofacidicsoils
AT pmarschner combininglimeandorganicamendmentsbasedontitratablealkalinityforefficientameliorationofacidicsoils